• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Recognition of projectively transformed planar figures. XIV. New methods for projectively-invariant description of ovals, using an H-polar curve and dual points

© 2020 P. P. Nikolaev

Institute for Information Transmission Problems “Kharkevich Institute” RAS 127994 Moscow, Bolshoy Karetny per., 19, Russia
Smart Engines Service LLC, 117312 Moscow, Prospect 60-Letiya Oktyabrya, 9, Russia

Received 17 Jan 2020

On the basis of the algorithms proposed for processing oval curves of a general form with a fixed position P either inside or outside the field of the figure, it is shown how 2 (at least) pairs of projectively-stable points called dual pairs (DP) are calculated on the previously introduced H-polar curve. Each DP defines a quartet of projectively- invariant positions on the contour of the oval (O). The four points found on the O contour are used to obtain the etalon of O (the invariant projection of O onto a certain quadrangle), while DP compositions (numbering more than two) are suitable for organizing small-sized descriptors of O. The procedures for calculating stable O vertices for the following cases are described: search for a DP with the use of a harmonic contour (sort of the H-polar curve localized inside O); search for the external position of P (DP on the Plucker polar curve of the pole P); introducing an ht-polar curve (the “symbiont” of the H- and the T-polar curves that we introduced earlier), as well as the invariant description of O, which does not require specifying P (using an additional smooth-closed contour obtained via preprocessing of O using all the vertices of its approximation). Most of the considered cases include model demonstrations of computing wurf mappings (WM) of O on the basis of a set of independent wurf functions for different scenarios of the input picture, including a new approach that uses a harmonic contour O to obtain invariant WMs.

Key words: oval, test pole, Plücker pole and polar curve, dual points of an H-polar curve, harmonic contour, wurf function, projectively invariant mapping, cevian

DOI: 10.31857/S0235009220030063

Cite: Nikolaev P. P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. xiv. novye metody proektivno invariantnogo opisaniya ovalov s privlecheniem h-polyary i dualnykh tochek [Recognition of projectively transformed planar figures. xiv. new methods for projectively-invariant description of ovals, using an h-polar curve and dual points]. Sensornye sistemy [Sensory systems]. 2020. V. 34(3). P. 226-253 (in Russian). doi: 10.31857/S0235009220030063

References:

  • Akimova G.P., Bogdanov D.S., Kuratov P.A. Zadacha proektivno invariantnogo opisanija ovalov s nejavno vyrazhennoj central’noj i osevoj simmetriej i princip dvojstvennosti Pljukkera [Task projectively the invariant description of ovals with implicitly expressed central and axial symmetry and the principle of a duality of Plucker]. Trudy ISA RAN [Proceedings of the ISA RAS]. 2014. V. 64 (1). P. 75–83 (in Russian).
  • Balitsky A.M., Savchik A.V., Gafarov R.F., Konovalenko I.A. O proektivno invariantnyh tochkah ovala s vydelennoj vneshnej prjamoj [On projective invariant points of oval coupled with external line]. Problemy peredachi informacii [Problems of Information Transmission]. 2017. V. 53 (3). P. 84–89 (in Russian).
  • Glagolev N.A. Proektivnaja geometrija [Projective geometry]. Moscow, Vysshaja shkola [High school]. 1963. 344 p. (in Russian).
  • Deputatov V.N. K voprosu o prirode ploskostnyh vurfov [On the nature of the plane wurfs]. Matematicheskij sbornik [Mathematical collection]. 1926. V. 33 (1). P. 109–118 (in Russian).
  • Kartan Je. The method of a moving ranging mark, the theory of continuous groups and generalized spaces. Moscow, Leningrad, Gosudarstvennoe tehniko-teoreticheskoe izdatel’stvo [State technical and theoretical publishing]. 1933. 72 p. (in Russian).
  • Modenov P.S. Analiticheskaja geometrija [Analytic geometry]. Moscow, Izdatel’stvo moskovskogo universiteta [Moscow University Press]. 1969. 699 p. (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannyh ploskih figur. III. Obrabotka osesimmetrichnyh ovalov metodami analiza polyar [Recognition of projectively transformed planar figures. III. Processing of axisymmetric ovals by means of polar line analysis methods]. Sensornye sistemy [Sensory systems]. 2011. V. 25 (4). P. 275–296 (in Russian).
  • Nikolayev P.P. Metod proektivno invariantnogo opisaniya ovalov s osevoj libo central’noj simmetriej [A method for projectively-invariant description of ovals having axial or central symmetry]. Informacionnye tekhnologii i vychislitel’nye sistemy [Journal of Information Technologies and Computing Systems]. 2014. № 2. P. 46–59 (in Russian).
  • Nikolayev P.P. Proektivno invariantnoe opisanie ovalov s simmetriyami trekh rodov [A projective invariant description of ovals with three possible symmetry genera]. Vestnik RFFI [Russian Foundation for Basic Research Journal]. 2016. V. 92 (4). P. 38–54 (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannyh ploskih figur. X. Metody poiska okteta invariantnyh tochek kontura ovala – itog vklyucheniya razvitoj teorii v skhemy ego opisaniya [Recognition of projectively transformed planar figures. X. Methods for finding an octet of invariant points of an oval contour – the result of introducing a developed theory into the schemes of oval description]. Sensornye sistemy [Sensory systems]. 2017a. V. 31 (3). P. 202–226 (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. XI. novye metody poiska proektivno invariantnykh tochek ovala [Recognition of projectively transformed planar gures. XI. a new methods for detecting projectively-invariant points of an oval]. Sensornye sistemy [Sensory systems]. 2017b. V. 31 (4). P. 343–362 (in Russian).
  • Nikolayev P.P., Savchik A.V., Konovalenko I.A. Proektivno invariantnoe predstavlenie kompozicii dvuh ovalov [A projectively invariant representation of a composition of two ovals]. Informacionnye processy [Information processes]. 2018. V. 18 (4). P. 304–321 (in Russian).
  • Nikolaev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. XIII. Novye metody proektivno invariantnogo opisaniya ovalov s ispolzovaniem T–polyary [Recognition of projectively transformed planar figures. XIII. New methods for projectively-invariant description of ovals, using a T–polar curve]. Sensornye sistemy [Sensory systems]. 2019. V. 33 (3). P. 238–266 (in Russian). https://doi.org/10.1134/S0235009219030077
  • Ovsienko I.U., Tabachnikov S.L. Proektivnaja differencial’naja geometrija. Staroe i novoe: ot proizvodnoj Shvarca do kogomologij grupp diffeomorfizmov [Projective Differential Geometry Old and New From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups]. Moscow, MCNMO [MCCME]. 2008. 280 p. (in Russian).
  • Savchik A.V., Nikolayev P.P. Teorema o peresechenii T- i H-polar [The theorem on the intersection of the T- and H-polars]. Informacionnye processy [Information processes]. 2016. V. 16 (4). P. 430–443 (in Russian).
  • Savchik A.V., Nikolaev P.P. Metod proektivnogo sopostavlenija dlja ovalov s dvumja osobymi tochkami [Projective matching method for ovals with two singular points]. Informacionnye tehnologii i vychislitel'nye sistemy [Information technology and computing systems]. 2018. (4). P. 40-47.
  • Alt H., Godau M. Computing the Frechet distance between two polygonal curves. Intern. J. Comput. Geom. Applicat. 1995. V. 5 (1–2). P. 75–91.
  • Faugeras O. Cartan’s moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes. Joint European-US Workshop on Applications of Invariance in Computer Vision. Berlin, Heidelberg. Springer, 1993. P. 9–46.
  • Hann C.E., Hickman M.S. Projective curvature and integral invariants. Acta Appl. Math. 2002. V. 74 (2). P. 177–193.
  • Hoff D., Olver, P.J. Extensions of invariant signatures for object recognition. J. Math. Imaging Vision. 2013. V. 45. P. 176–185.
  • Musso E., Nicolodi L. Invariant signature of closed planar curves. J. Math. Imag. Vision. 2009. V. 35 (1). P. 68–85.
  • Olver P.J. Geometric foundations of numerical algorithms and symmetry. Appl. Alg. Engin. Comp. Commun. 2001. V. 11. P. 417–436.
  • Olver P.J. Recursive moving frames. Results Math. 2011. V. 60. P. 423–452.
  • Savchik A.V., Sablina V.A., Nikolaev D.P. Establishing the correspondence between closed contours of objects in images with projective distortions. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 2018. V. 10696. P. 584–592. https://doi.org/10.1117/12.2310186