• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Sensory motion aftereffects

© 2017 I. G. Andreeva

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS 194223 St. Petersburg, Toreza, 44

Received 25 Jul 2017

The sensory motion aftereffect is a changing of the perception of the position and/or motion subsequent (test) stimuli after adaptation to walking, passive translocation or rotation of the body or its parts or after mono-(poly)modal stimulation. In the latter case, a reliable effect occurs when motion simulation is close to real. In the basis of neuronal mechanisms of the aftereffects that occur in di erent modalities, short-term functional changes of the neuronal activity of those populations, which are involved in the analysis of the adapting stimulus, are. This selectivity allows apply aftereffects for the study of mechanisms of spatial perception. Motion aftereffects were found for all sensory systems that provide orientation in space. The data about multimodal effects allow to suggests that neuronal structures involved in motion analysis are located not only in monomodal centers of that performance, but also in multimodal areas of the cerebral cortex. However, how these aftereffects are interrelated and whether they have a universal mechanism of reorganization of sensory perception or substantially di erent, is unclear.

Key words: spatial orientation, sensory adaptation, motion perception, sensory aftereffect, multisensory interaction

Cite: Andreeva I. G. Sensornoe posledeistvie dvizheniya [Sensory motion aftereffects]. Sensornye sistemy [Sensory systems]. 2017. V. 31(4). P. 279-290 (in Russian).

References:

  • Andreeva I.G. The motion aftereffect as a universal phenomenon in sensory systems involved in space orientation: II. Auditory motion aftereffect // J. Evol. Biochem. Fiziol. 2015. V. 51. No 3. P. 145–153 [in Russian].
  • Andreeva I. G., Malinina E.S. Auditory motion aftereffects of approaching and withdrawing sound sources // Fiziologiya Cheloveka. 2010. V. 36. No 3. P. 290–294 [in Russian].
  • Andreeva I.G., Nikolaeva A.V. Auditory motion aftereffects of low- and high-frequency sound stimuli // Fiziologiya Cheloveka. 2013. Т. 39. No 4. С. 450–453 [in Russian].
  • Andreeva I.G. Auditory adaptation to motion: Intersensory effects // Sensornye systemy. 2017. V. 31. No 2. P. 103–115 [in Russian].
  • Andreeva I.G., Bobrova E.V., Antifeev I.E., Gvozdeva A.P. The effects and aftereffects of a sound source approaching and withdrawing on postural responses in humans // Ross. Fiziol. Zh. Im I.M. Sechenova. 2016a. V. 102(8). P. 976–989 [in Russian].
  • Gvozdeva A.P., Pimenova V.M., Andreeva I.G., Golovanova L.E. Auditory motion perception during and after passive whole-body yaw rotation // Aviakosm. Ekolog. Med. 2016. V. 50. No 5. P. 49–50 [in Russian].
  • Malinina E.S., Andreeva I.G. The auditory aftereffects depending on sound source radial motion imitation methods // Sensornye systemy. 2012. V. 26. No 1. P. 11–19 [in Russian].
  • Anstis S. Aftereffects from jogging // Exp. Brain Res. 1995. V. 103. No 3. P. 476–478.
  • Anstis S.M., Verstraten F.A. J., Mather G. The motion aftereffect: a review // Trends Cogn. Sci. 1998. V. 2. P. 111–117.
  • Ashida H., Lingnau A., Wall M.B., Andrew T., Smith A.T. fMRI adaptation reveals separate mechanisms for first-order and second-order motion // J. Neurophysiol. 2007. V. 97. P. 1319–1325.
  • Barlow H.B., Hill R.M. Evidence for a physiological explanation for the waterfall phenomenon and gural aftereffects // Nature. 1963. V. 200. P. 1345–1347.
  • Bensmaïa S.J., Denchev P.V., Dammann J.F., Craig J.C., Hsiao S.S. The representation of stimulus orientation in the early stages of somatosensory processing // J. Neurosci. 2008. V. 28. P. 776–786.
  • Berger C.C., Ehrsson H.H. Auditory motion elicits a visual motion aftereffect // Frontiers in Neuroscience. 2016. V. 10. A. 559.
  • Bertolini G., Ramat S., Bockisch C.J., Marti S., Straumann D. Is vestibular self-motion perception controlled by the velocity storage? Insights from patients with chronic degeneration of the vestibulo-cerebellum. PLoS ONE. 2012. V. 7. N6: e36763. doi:10.1371/journal.pone.0036763.
  • Blake R., Sobel K.V., James T.W. Neural synergy between kinetic vision and touch // Psychol. Sci. 2004. V. 15. P. 397–402.
  • Blanchard C., Roll R., Roll J.-P., Kavounoudias A. Di erential contributions of vision, touch and muscle proprioception to the coding of hand movements // PLoS ONE. 2013. V. 8. No 4. e62475.
  • Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: review and metaanalysis of FMRI studies in healthy participants // Neuropsychol. Rev. 2014. V. 24. No 2. P. 236–251.
  • Brennan A.A., Bakdash J.Z., Proffitt D.R. Treadmill experience mediates the perceptual-motor aftereffect of treadmill walking // Exp. Brain Res. 2012. V. 216. No 4. P. 527–534.
  • Carlile S., Leung J. The perception of auditory motion // Trends in Hearing. 2016. V. 20. P. 1–19.
  • Crane B.T. Fore-aft translation aftereffects // Exp. Brain Res. 2012. V. 219. P. 477–487.
  • Crane B.T. Limited interaction between translation and visual motion aftereffects in humans // Exp. Brain Res. 2013. V. 224. P. 165–178.
  • Cressman E.K., Henriques D.Y.P. Sensory recalibration of hand position following visuomotor adaptation // J. Neurophysiol. 2009. V. 102. P. 3505–3518.
  • Deas R.W., Roach N.W., McGraw P.V. Distortions of perceived auditory and visual space following adaptation to motion // Exp. Brain Res. 2008. V. 191. P. 473–485.
  • Dong C.J., Swindale N.V., Zakarauskas P., Hayward V., Cynader M.S. The auditory motion aftereffect: its tuning and speci city in the spatial and frequency domains // Percept. Psychophys. 2000. V. 62. P. 1099–1111.
  • Durgin F.H., Pelah A., Fox L.F., Lewis J., Kane R., Walley K.A. Self-motion perception during locomotor recalibration: more than meets the eye // J. Exp. Psychol. Hum. Percept. Perform. 2005. V. 31. No 3. P. 398–419.
  • Ehrenstein W.H. Auditory aftereffects following simulated motion produced by varying interaural intensity or time // Perception. 1994. V. 23. P. 1249–1255.
  • Ehrenstein W.H. Direction-speci c acoustical aftereffects // J. Acoust. Soc. Amer. 1978. V. 64. Suppl. 1. S35.
  • Favreau O.E. Motion aftereffects: evidence for parallel processing in motion perception // Vision Res. 1976. V. 16. P. 181–186.
  • Frisby J.P. Seeing: Illusion, Brain and Mind, Oxford University Press, 1979.
  • Grantham W.D. Auditory motion aftereffects in the horizontal plane: the effects of the spectral region, spatial sector and spatial richness // Acta Acustica. 1998. V. 84. P. 337–347.
  • Grantham W.D. Motion aftereffects with horizontally moving sound sources in the free eld // Percept. Psychophys. 1989. V. 45. No 2. P. 129–136.
  • Grantham W.D., Wightman F.L. Auditory motion aftereffects // Percept. Psychophys. 1979. V. 26. P. 403–408.
  • Gvozdeva A.P., Andreeva I.G. Auditory aftereffects of continuously and discontinuously approaching sound images // Neuroscience and Behavioral Physiology. 2016. V. 46. No 7. P. 808–815.
  • Hagen M.C., Franzen O., McGlone F., Essick G., Dancer C., Pardo J.V. Tactile motion activates the human middle temporal/V5 (MT/V5) complex // Eur. J. Neurosci. 2002. V. 16. P. 957–964.
  • Holland H.C. The Spiral After-Effect. Pergamon, 1965.
  • Hollins M., Favorov O. The tactile movement aftereffect // Somatosens. Mot. Res. 1994. V. 11. P. 153–162.
  • Holten V., Smagt M.J., Donker S.F., Verstraten F.A.J. Illusory Motion of the Motion Aftereffect Induces Postural Sway // Psychological Science. 2014. V. 25. No 9. P. 1831–1834.
  • Jain A., Sally S.L., Papathomas T.V. Audiovisual short-term in uences and aftereffects in motion: Examination across three sets of directional pairings // J. Vision. 2008. V. 8. No 7. P. 1–13.
  • Kingma H., van de Berg R. Anatomy, physiology and physics of the peripheral vestibular system // Handbook of Clinical Neurology / Eds J.M. Furman, T. Lempert. Germany: Elsevier, 2016. V. 137. Ch. 1. P. 1–16.
  • Kitagawa N., Ichihara S. Hearing visual motion in depth // Nature. 2002. V. 416. P. 172–174.
  • Kito T., Hashimoto T., Yoneda T., Katamoto S., Naito E. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration // Brain Res. 2006. V. 1114. P. 75–84.
  • Konkle T., Moore C.I. What can crossmodal aftereffects reveal about neural representation and dynamics? // Communicative and Integrative Biology. 2009. V. 2. P. 479–481.
  • Konkle T., Wang Q., Hayward V., Moore C.I. Motion aftereffects transfer between touch and vision // Curr. Biol. 2009. V. 19. No 9. P. 745–750.
  • Kuroki S., Watanabe J., Mabuchi K., Tachi S., Nishida S. Directional remapping in tactile internger apparent motion: a motion aftereffect study // Exp. Brain Res. 2012. V. 216. P. 311–320.
  • Lacquaniti F., Bosco G., Indovina I., La Scaleia B., Ma ei V., Moscatelli A., Zago M. Visual gravitational motion and the vestibular system in humans // Front. Integr. Neurosci. 2013. V. 7. A. 101.
  • Lerner E.A., Craig J.C. The prevalence of tactile motion aftereffects // Somatosens. Mot. Res. 2002. V. 19. P. 24–29.
  • Lopez C., Blanke O. The thalamocortical vestibular system in animals and humans // Brain research reviews. 2011. V. 67. P. 119–146.
  • Mather G., Pavan A., Campana G., Casco C. The motion aftereffect reloaded // Trends Cogn. Sci. 2008. V. 12. No 12. P. 481–487.
  • McCrea R.A., Gdowski G.T., Boyle R., Belton T. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eyemovement related neurons // J. Neurophysiol. 1999. V. 82. No 1. P. 416–428.
  • McIntyre S., Holcombe A.O., Birznieks I., Seizova-Cajic T. Tactile motion adaptation reduces perceived speed but shows no evidence of direction sensitivity // PLOS ONE. 2012. V. 7. No 9: e4.5438.
  • Morgan M.J., Ward R. Conditions for motion flow in dynamic visual noise // Vision Res. 1980. V. 20. No 5. P. 431–435.
  • Moulden B. After-effects and the integration of patterns of neural activity within a channel // Philos. Trans. R. Soc. London Ser. B. 1980. V. 290. P. 39–55.
  • Naito E., Ehrsson H.H. Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex // J. Neurosci. 2006. V. 26. P. 3783–3790.
  • Nakashita S., Saito D.N., Kochiyama T., Honda M., Tanabe H.C., Sadato N. Tactile-visual integration in the posterior parietal cortex: A functional magnetic resonance imaging study // Brain Research Bulletin. 2008. V. 75. P. 513–525.
  • Neelon M.F., Jenison R.L. The effect of trajectory on the auditory motion aftereffect // Hearing Res. 2003. V. 180. P. 57–66.
  • Neelon M.F., Jenison R.L. The temporal growth and decay of the auditory motion aftereffect // J. Acoust. Soc. Amer. 2004. V. 115. No 6. P. 3112–3122.
  • Nishida S., Ashida H., Sato T. Complete interocular transfer of motion aftereffect with ickering test // Vis. Res. 1994. V. 34. P. 2707–2716.
  • Nishida S., Sato T. Motion aftereffect with ickering test patterns reveals higher stages of motion processing // Vision Res. 1995. V. 35. V. 4. P. 477–490.
  • Noo S.A. E., Groen E.L. Rolling into spatial disorientation: simulator demonstration of the post-roll (Gillingham) illusion // Aviat. Space Environ. Med. 2011. V. 82. P. 505–512.
  • Orlov V.A., Gvozdeva A.P., Zavyalova V.V., Ushakov V.L., Andreeva I.G. Neural Substrates of the Auditory Motion Aftereffect: A Functional MRI Study // Proc. Comp. Sci. 2016. V. 88. P. 282–287.
  • Pei Y.C., Hsiao S.S., Craing J.C., Bensmaïa S.J. Shape invariant coding of motion direction in somatosensory cortex // PLoS Biol. 2010. V. 8. N4: e1000305.
  • Philbeck J.W., Woods A.J., Arthur J., Todd J. Progressive locomotor recalibration during blind walking // Percept. Psychophys. 2008. V. 70. No 8. P. 1459–1470.
  • Planetta P.J., Servos P. The postcentral gyrus shows sustained fMRI activation during the tactile motion aftereffect // Exp. Brain Res. 2012. V. 216. P. 535–544.
  • Planetta P.J., Servos P. Site of stimulation effects on the prevalence of the tactile motion aftereffect // Exp. Brain Res. 2010. V. 202. P. 377–383.
  • Regan D., Gray R. Binocular processing of motion: Some unresolved questions // Spatial Vision. 2009. V. 22. P. 1–43.
  • Reynolds R., Bronstein A. The moving platform after-effect reveals dissociation between we know and how we walk // J. Neural Transm. 2007. V. 114. P. 1297–1303.
  • Ribot-Ciscar E., Roll J.P., Gilhodes J.C. Human motor unit activity during post-vibratory and imitative voluntary muscle contractions // Brain Res. 1996. V. 716. P. 84–90.
  • Ribot-Ciscar E., Rossi-Durand C., Roll J.P. Muscle spindle activity following muscle tendon vibration in man // Neurosci. Lett. 1998. V. 258. No 3. P. 147–150.
  • Sakano Y., Allison R.S., Howard I.P. Motion aftereffect in depth based on binocular information // J. Vision. 2012. V. 12. No 1. P. 1–15.
  • Seizova-Cajic T., Sachtler W.L. Adaptation of a bimodal integration stage: visual input needed during neck muscle vibration to elicit a motion aftereffect // Exp. Brain Res. 2007. V. 181. No 1. P. 117–129.
  • Shioiri S., Nakajima T., Kakehi D., Yaguchi H. Di erences in temporal frequency tuning between the two binocular mechanisms for seeing motion in depth // Journal of the Optical Society of America A. 2008. V. 25. P. 1574–1585.
  • Shu Z.J., Swindale N.V., Cynader M.S. Spectral motion produces an auditory after-effect // Nature. 1993. V. 364. P. 721–723.
  • Soto-Faraco S., Ronald A., Spence C. Tactile selective attention and body posture: assessing the multisensory contributions of vision and proprioception // Percept. Psychophys. 2004. V. 66. No 7. P. 1077–1094.
  • Sutherland N.S. Figural aftereffects and apparent size // Q.J. Exp. Psychol. 1961. V. 13. P. 222–228.
  • Taylor J.G., Schmitz N., Ziemons K., Grosse-Ruyken M.L., Gruber O., Mueller-Gaertner H. W., Shah N.J. The network of brain areas involved in the motion aftereffect // Neuroimage. 2000. V. 11. P. 257–270.
  • Thalman W.A. The after-effect of movement in the sense of touch // Am. J. Psychol. 1922. V. 33. P. 268–276.
  • Turchet L., Camponogara I., Cesari P. Interactive footstep sounds modulate the perceptual-motor aftereffect of treadmill walking // Exp. Brain Res. 2015. V. 233. No 1. P. 205–214.
  • Watanabe J., Hayashi S., Kajimoto H., Tachi S., Nishida S. Tactile motion aftereffects produced by appropriate presentation for mechanoreceptors // Exp. Brain Res. 2007. V. 180. P. 577–582.