• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

SCREEN-PRINTED ELECTRODES MODIFIED WITH PROTEIN HYDROGEL AND BACTERIAL CELLS AS THE BASIS OF AMPEROMETRIC BIOSENSOR

© 2017 S. S. Kamanin, V. A. Arlyapov, O. N. Ponamoreva, I. V. Blokhin, V. A. Alferov, A. N. Reshetilov

Federal state budgetary educational institution of higher education “Tula state university”, 300012 Tula, Lenin av., 92
Federal state budgetary educational institution of higher vocational education “Tula state pedagogical university named after L.N. Tolstoy”, 300026 Tula, Lenin av., 125
Federal state budgetary educational institution of science G.K. Skryabin Institute of biochemistry and physiology of microorganisms, RAS, 142290 Moscow region, Pushchino, Nauka pr., 5

Received 20 Dec 2016

The electrodes, produced using matrix printing technique, were modified with protein hydrogel containing bacterial cells. The aim of this study was to estimate modification parameters and the effciency of biosensors during express- determination of biological oxygen demand (BOD). Protein hydrogel was formed from cross-linked bovine serum albumin covalently bound to residual ferrocene carboxaldehyde. Bacterial cells G. oxydans (ВКМ B-1280) were used as raw material for biocatalyst. For the mediators of ferrocene series: ferrocene, ferrocene carboxaldehyde, 1,1’-ferrocenedimethanol, 1,1’-dimethylferrocene or ethylferrocene the indices of their bioelectrocatalytic effciency were first determined in the course of immobilization in hydrogel. It was found that the mechanism of electron transfer in the system follows a ping- pong model. The use of protein hydrogel led to a considerable increase in stability of the analytical signal of the microbial biosensor. The BOD levels of wastes were detected using a fabricated biosensor. The range of measured BOD concentrations was 0.162–23 mg O2/l with the standard deviation of 5%. It was shown that the use of protein matrix based on ferrocene carboxaldehyde and the mentioned bacterial cells in combination with the electrode, produced through a matrix printing, provides the possibility of obtaining data strongly correlated with the results of standard method.

Key words: biosensor, screen-printed electrode, redox polymer, ferrocene derivative, G. oxydans

Cite: Kamanin S. S., Arlyapov V. A., Ponamoreva O. N., Blokhin I. V., Alferov V. A., Reshetilov A. N. Grafitovye pechatnye elektrody, modifitsirovannye provodyashchim belkovym gidrogelem i bakterialnymi kletkami, kak osnova amperometricheskogo biosensora [Screen-printed electrodes modified with protein hydrogel and bacterial cells as the basis of amperometric biosensor]. Sensornye sistemy [Sensory systems]. 2017. V. 31(2). P. 161-171 (in Russian).

References:

  • Arlyapov V.A., Chepurnova M. A. Time Resistance of Microbial Associations as Potential Biorecognition Elements for BPC-Sensors // News of Tula State University. Natural Sciences. 2012. V. 2. P. 201–211 [in Russian]
  • Alferov S.V., Minaicheva P.R., Arlyapov V.A., Asulyan L.D., Alferov V.A., Ponamoreva O.N., Reshetilov A. N. Bioanode for a microbial fuel cell based on Gluconobacter oxydans immobilized into a polymer matrix // Appl. Biochem. Microbiol. 2014. V. 50. No6. P. 637–643 [in Russian]
  • Chigrinova E. Ya., Babkina E.E., Ponamoreva O.N., Alferov V.A., Reshetilov A. N. Microbial biosensors on the basis of ferrocene and benzoquinone derivatives used as mediators // Sensory systems. 2007. V. 21. No 3. P. 263–269 [in Russian]
  • Alonso-Lomillo M.A., Dominguez-Renedo O., Arcos-Martinez M. J. Screen-printed biosensors in microbiology; a review // Talanta. 2010. V. 82. No 5. P. 1629–1636.
  • Babkina E.E., Chigrinova E. Ya., Ponamoreva О.N., Alferov V.A., Reshetilov A. N. Bioelectrocatalytic oxidation of glucose by immobilized bacteria Gluconobacter oxydans. Evaluation of water-insoluble mediator efficiency // Electroanalysis. 2006. V. 18. No 19–20. P. 2023–2029.
  • Bereza-Malcolm L.T., Mann G., Franks A.E. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach // ACS Synth. Biol. 2015. V. 4. No 5. P. 535–546.
  • Biochemical oxygen demand (BOD) // Standard methods for the examination of water and wastewater. 22nd / Eds. E.W. Rice, R.B. Baird, A.D. Eaton L.S.C. AWWA, WEF & APHA, 2012. P. 1496.
  • Bonetto M.C. Sacco N.J., Ohlsson A.H., Cortón E. Assessing the effect of oxygen and microbial inhibitors to optimize ferricyanide-mediated BOD assay // Talanta. 2011. V. 85. No 1. P. 455–462.
  • Chan C., Lehmann M., Chan K., Chan P., Chan C. Designing an amperometric thick-film microbial BOD sensor // Biosens. Bioelectron. 2000. V. 15. No 7–8. P. 343–353.
  • Chappell J., Freemont P. Synthetic biology – a new generation of biofilm biosensors // The Science and Applications of Synthetic and Systems Biology: Workshop Summary. Washington (DC): Acad. Press (US), 2013. P. 159–178.
  • Das P., Das M., Chinnadayyala S.R., Singha I. M. Recent advances on developing 3rd generation enzyme electrode for biosensor applications // Biosens. Bioelectron. 2016. V. 79. P. 386–397.
  • Domínguez-Renedo O., Alonso-Lomillo M.A., ArcosMartínez M. J. Disposable electrochemical biosensors in microbiology // Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology / Ed. Mendez-Vilas A. Extremadura, Spain: Formatex Research Center, 2010. P. 1462–1470.
  • Hasan K., Patil S.A., Leech D., Hägerhäll C., Gorton L. Electrochemical communication between microbial cells and electrodes via osmium redox systems // Biochem. Soc. Trans. 2012. V. 40. No 6. P. 1330–1335.
  • Hayat A., Marty J. L. Disposable screen printed electrochemical sensors: Tools for environmental monitoring // Sensors (Switzerland). 2014. V. 14. No 6. P. 10432–10453.
  • Ikeda T., Kurosaki T., Takayama K., Kano K. Measurements of Oxidoreductase-like Activity of Intact Bacterial Cells by an Amperometric Method Using a Membrane-Coated Electrode // Anal. Chem. Am. Chemical Society. 1996. V. 68. No 1. P. 192–198.
  • Indzhgiya E., Ponamoreva O., Alferov V., Reshetilov A., Gorton Lo. Interaction of Ferrocene Mediators with Gluconobacter oxydans Immobilized Whole Cells and Membrane Fractions in Oxidation of Ethanol // Electroanalysis. 2012. V. 24. No 4. P. 924–930.
  • Jouanneau S., Recoules L., Durand M.J., Boukabache A. Methods for assessing biochemical oxygen demand (BOD): a review // Water Res. 2014. V. 49. P. 62–82.
  • Liu L., Bai L., Yu D., Zhai J., Dong S. Biochemical oxygen demand measurement by mediator method in flow system // Talanta. 2015. V. 138. P. 36–39.
  • Mamlouk D., Gullo M. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation // Indian J. Microbiol. 2013. V. 53. No 4. P. 377–384.
  • Pasco N.F., Weld R.J., Hay J.M., Gooneratne R. Development and applications of whole cell biosensors for ecotoxicity testing // Anal. Bioanal. Chem. 2011. V. 400. No 4. P. 931–945.
  • Ponamoreva O.N., Indzhgiya Yu., Alferov V.A., Reshetilov A. N. E ciency of bioelectroca ons of Gluconobacter oxydans bacteria in the presence of mediators of ferrocene series // Russ. J. Electrochem. 2010. V. 46. No 12. P. 1408–1413.
  • Ponamoreva O.N., Arlyapov V.A., Alferov V.A., Reshetilov A. N. Microbial biosensors for detection of biological oxygen demand: a review // Appl. Biochem. Microbiol. 2011. V. 47. No 1. P. 1–11.
  • Reshetilov A. N. Microbial, Enzymatic, and Immune Biosensors for Ecological Monitoring and Control of Biotechnological Processes // Appl. Biochem. Microbiol. 2005. V. 41. No 5. P. 442–449.
  • Reshetilov A.N., Arlyapov V.A., Alferov V.A., Reshetilova T.A. BOD Biosensors: Application of Novel Technologies and Prospects for the Development // State of the Art in Biosensors / Ed. T. Rinken. Croatia. InTech – Open Access Company, 2012. Chapter 3. P. 57–77.
  • Ron E.Z., Rishpon J. Whole Cell Sensing Systems I: Reporter Cells and Devices / Eds. S. Belkin, B. M. Gu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 77–84.
  • Su L., Jia W., Hou C., Lei Y. Microbial biosensors: a review // Biosens. Bioelectron. 2011. V. 26. No 5. P. 1788–1799.
  • Sun J.-Z., Kingori G.P., Si R.W., Zhai D. D. Microbial fuel cell-based biosensors for environmental monitoring: a review // Water Sci. Technol. IWA Publishing, 2015. V. 71. No 6. P. 801–809.
  • Svitel J. Tkáč J., Voštiar I., Navrátil M., Štefuca V. Gluconobacter in biosensors: applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction // Biotechnol. Lett. Kluwer Acad. Publ., 2006. V. 28. No 24. P. 2003–2010.
  • Svitel J., Tkac J., Vostiar I., Navratil M. Microbial biosensors and biofuel cells based on Acetobacter and Gluconobacter cells // Biosensors: Properties, Materials and Applications / Eds. R. Comeaux, P.N. Novotny: Nova Sci. Publ. Inc., 2009. P. 247–264.
  • Tkac J., Svitel J., Vostiar I., Navratil M., Gemeiner P. Membrane-bound dehydrogenases from Gluconobacter sp.: interfacial electrochemistry and direct bioelectrocatalysis // Bioelectrochemistry. 2009. V. 76. No 1–2. P. 53–62.
  • Turner A.P.F. Biosensors: sense and sensibility // Chem. Soc. Rev. 2013. V. 42. No 8. P. 3184–3196.
  • Wilson R., Turner A.P.F. Glucose oxidase: an ideal enzyme // Biosens. Bioelectron. 1992. V. 7. No 3. P. 165–185.
  • Xiao Y., Araujo C., Sze C., Stuckey D. Toxicity measurement in biological wastewater treatment processes: a review // J. Hazard. Mater. 2015. V. 286. P. 15–29.
  • Yang H. Enzyme-based ultrasensitive electrochemical biosensors // Curr. Opin. Chem. Biol. 2012. V. 16. No 3–4. P. 422–428.
  • Yılmaz Ö., Demirkol D., Gülcemal S., Kılınç A. Chitosanferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors // Colloids Surfaces. Biointerfaces. 2012. V. 100. P. 62–68.