• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

AUDITORY ADAPTATION TO MOTION: INTERSENSORY EFFECTS

© 2017 I. G. Andreeva

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS 194223 St. Petersburg, pr. Toreza, 44

Received 06 Dec 2016

The review analyzes data on the audiomotor control and on the sound localization during passive motion, vections and motion aftereffects. The results of psychophysical and objective methods were described and compared. Multimodal integration of di erent sensory streams accompanying di erent types of motion and vections is discussed. The hypothesis about the role of velocity storage mechanism, that discovered in the studies of the vestibular system, was proposed to explain the phenomena received in investigations of the auditory adaptation to motion.

Key words: audiomotor control, auditory adaptation, motion perception, auditory aftereffect, intersensory interaction, vection

Cite: Andreeva I. G. Slukhovaya adaptatsiya k dvizheniyu: mezhsensornyi aspekt [Auditory adaptation to motion: intersensory effects]. Sensornye sistemy [Sensory systems]. 2017. V. 31(2). P. 103-115 (in Russian).

References:

  • Altman Ya. A. The directional hearing. SPb.: Pavlov Institute of Physiology RAS, 2011. 311 c. [in Russian].
  • Altman Ya.A., Vaitulevich S. F., Varfolomeev A. L., Petropavlovskaya E. A., Shestopalova L.B. Mismath negativity as a characteristic of the distinguishing locating capacity of the human auditory system // Human Physiology. 2007. V. 33. No 5. P. 22–30 [in Russian].
  • Altman J. A., Vaitulevich S. P., Petropavlovskaia E. A., Shestopalova L. B. Discrimination of the dynamic properties of sound source spatial location in humans: electrophysiology and psychophysics // Human Physiology. 2010. V. 36. No 1. P. 83–93 [in Russian].
  • Andreeva I. G. The motion aftereffect as a universal phenomenon in sensory systems involved in space orientation: II. Auditory motion aftereffect // Journal of Evolutionary Biochemistry and Physiology. 2015. V. 51. No 3. P. 145–153 [in Russian].
  • Andreeva I. G. The duration of auditory aftereffect in case of short adaptation to sound source approach // Sensory systems. 2010. V. 24. No 4. P. 28–34 [in Russian].
  • Andreeva I. G. The Motion Aftereffect as a Universal Phenomenon in Sensory Systems Involved in Spatial Orientation. III. Aftereffect of Motion Adaptation in the Somatosensory and Vestibular Systems // Journal of Evolutionary Biochemistry and Physiology. 2016. V. 52. No 5. P. 307–315 [in Russian].
  • Andreeva I. G., Bobrova E. V., Antifeev I. E., Gvozdeva A. P. The effects and aftereffects of a sound source approaching and withdrawing on postural responses in humans // Ross. Fiziol. Zh. Im I.M. Sechenova. 2016a. V. 102(8). P. 976–989 [in Russian].
  • Andreeva I. G., Ushakov V. L., Bobrova E. V., Orlov V. A., Gvozdeva A. P., Smirnova V. A. Manifestations of auditory motion adaptation in the activations of multimodal areas of cortex and in postural reactions // Aviakosm. Ekolog. Med. 2016b. V. 50. No 5. P. 7–8 [in Russian].
  • Vasilenko Y. A., Shestopalova L. B. Moving sound source discrimination in humans: mismatch negativity and psychophysics // Human Physiology. 2010. V. 36. No 2. P. 23–31 [in Russian].
  • Gvozdeva A. P., Andreeva I. G. Estimation of the auditory motion aftereffect’’s duration in case of longterm adaptation to approaching sound source // Sensory systems. 2013. V. 27. No 3. P. 205–215 [in Russian].
  • Gvozdeva A. P., Pimenova V. M., Andreeva I. G., Golovanova L. E. Auditory motion perception during and after passive whole-body yaw rotation // Aviakosm Ekolog Med. 2016. V. 50. No 5. P. 49–50 [in Russian].
  • Gekhman B.I. Audiokinetic nystagmus // Sensory systems. 1991. V. 5. No 2. P. 71–78. [in Russian].
  • Kulikov G. A. Hearing and motion: physiological basis of auditory-motion coordination. L.: Nauka, 1989. 198 p. [in Russian].
  • Malinina E.S., Andreeva I. G. Auditory aftereffects of approaching and withdrawing sound sources: dependence on the trajectory and location of adapting stimuli // Journal of Evolutionary Biochemistry and Physiology. 2013. V. 49. No 3. P. 211– 223 [in Russian].
  • Auditory system / Ed. Ya.A. Altman. L.: Nauka, 1990. 620 p. [in Russian].
  • Alink A.E. Auditory motion direction encoding in auditory cortex and high-level visual cortex // Human Brain Mapping. 2012. P. 969–978.
  • Al’tman Ya. A., Gurfinkel’ V. S., Varyagina O. V., Levik Yu. S. The effects of moving sound images on postural responses and the head rotation illusion in humans // Neurosci. Behav. Physiol. 2005. V. 35(1). P. 103–106.
  • Altman J. A., Bechterev N. N., Radionova E. A., Shmigidina G.N., Syka J. Electrical responses of the auditory area of the cerebellar cortex to acoustical stimulation // Exp. Brain Res. 1976. V. 26. P. 285–296.
  • AltmannC.F., Getzmann S., Lewald J.Allocentric or craniocentric representation of acoustic space: an electrotomography study using mismatch negativity // PLoS ONE. 2012. 7(7): e41872. DOI: 10.1371/journal. pone.0041872.
  • Anstis S. Aftereffects from jogging // Exp. Brain Res. 1995. V. 103(3). P. 476–478.
  • Apthorp D., Nagle F., Palmisano S. Chaos in balance: nonlinear measures of postural control predict individual variations in visual illusions of motion // PLoS ONE. 2014. V. 9. e113897. DOI: 10.1371/journal.pone.0113897
  • Berthoz A., Lacour M., Soechtin J. F., Vidal P. P. The role of vision in the control of posture during linear motion // Prog. Brain Res. 1979. V. 50. P. 197–209.
  • Bertolini G., Ramat S., Laurens J., Bockisch C. J., Marti S., Straumann D., Palla A. Velocity storage contribution to vestibular self-motion perception in healthy human subjects // J. Neurophysiol. 2011. V. 105. P. 209–223.
  • Blanks R. H., Estes M. S., Markham C. H. Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration // J. Neurophysiol. 1975. V. 38. P. 1250–1268.
  • Boccia M., Nemmi F., Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants // Neuropsychol. Rev. 2014. V. 24(2). P. 236–251.
  • Brennan A. A., Bakdash J. Z., Pro tt D. R. Treadmill experience mediates the perceptual-motor aftereffect of treadmill walking // Exp. Brain Res. 2012. V. 216(4). P. 527–534.
  • Camponogara I., Turchet L., Carner M., Marchioni D., Cesari P. To Hear or Not to Hear: Sound Availability Modulates Sensory-Motor Integration // Front. Neurosci. 2016. P. 10–22.
  • Clark B. B., Graybiel A. The effect of angular acceleration on sound localization: the audiogyral illusion // J. Psychol. 1949. V. 28. P. 235–244.
  • Cohen Y. E., Andersen R. A. Multimodal spatial representations in the primate parietal lobe // Crossmodal Space and Crossmodal Attention / Eds C. Spence, J. Driver Oxford: Oxford Univ. Press, 2004. P. 99–121.
  • Cullen K.E. Physiology of central pathways // // Handbook of Clinical Neurology. / Eds J.M. Furman, T. Lempert. Germany: Elsevier, 2016. V. 137. Ch. 2. P. 18–37.
  • Deas R. W., Roach N. W., McGraw P. V. Distortions of perceived auditory and visual space following adaptation to motion // Exp. Brain Res. 2008. V. 191. P. 473–485.
  • DiZio P., Held R., Lackner J. R., Shinn-Cunningham B., Durlach N. Gravitoinertial force magnitude and direction influence head-centric auditory localization // J. Neurophysiol. 2001. V. 85. P. 2455–2460.
  • Durgin F. H., Pelah A., Fox L. F., Lewis J., Kane R., Walley K. A. Self-motion perception during locomotor recalibration: more than meets the eye // J. Exp. Psychol. Hum. Percept. Perform. 2005. V. 31(3). P. 398–419.
  • Freeman E., Driver J. Direction of visual apparent motion driven solely by timing of a static sound // Curr. Biol. 2008. V. 18(16). P. 1262–1266.
  • Genzel D., Firzla U., Wiegrebe L, MacNeilage P. R. Dependence of auditory spatial updating on vestibular, proprioceptive, and e erence copy signals // J. Neurophysiol. 2016. V. 116(2). P. 765–775.
  • Getzmann S., Lewald J. Cortical processing of change in sound location: smooth motion versus discontinuous displacement // Brain Res. 2012. V. 1466. P. 119–127.
  • Getzmann S., Lewald J. Shared cortical systems for processing of horizontal and vertical sound motion // J. Neurophysiol. 2010. V. 103. P. 1896–1904.
  • Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. P. 2625–2633.
  • Grantham W. D., Wightman F. L. Auditory motion aftereffects // Percept. Psychophys. 1979. V. 26. P. 403–408.
  • Gray R., Regan D. Simulated self-motion alters perceived time to collision // Curr. Biol. 2000. V. 10. P. 587–590.
  • Graybiel A., Niven J.I. The effect of change in direction of resultant force on sound localization: the audiogravic illusion // J. Exp. Psychol. 1951. V. 42. P. 227–230.
  • Grzeschik R., Bӧckmann M., Mühler R., Hoffmann M. B. Motion-onset auditory evoked potentials critically depend on history // Exp. Brain Res. 2010. V. 203. P. 159–168.
  • Hitier M., Besnard S., Smith P. F. Vestibular pathways involve in cognition // Front. in Integrat. Neurosci. 2014. V. 8. A. 59. DOI: 10.3389/fnint.2014.00059
  • Jack C. E., Thurlow W. R. Effects of degree of visual association and angle of displacement on the “ventriloquism” effect // Percept. Motor Skill. 1973. V. 37. P. 967–979.
  • Jain A., Sally S. L., Papathomas, T. V. Audiovisual short-term influences and aftereffects in motion: Examination across three sets of directional pairings // J. Vision. 2008. V. 8. N7. P. 1–13.
  • Keshavarz B., Berti S. Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study // Behav. Brain Res. 2014. V. 259. P. 131–136.
  • Kim J., Palmisano S. Eccentric gaze dynamics enhance illusory self-motion in depth // J. Vis. 2010. V. 10. P. 1–11.
  • Kingma H., van de Berg R. Anatomy, physiology and physics of the peripheral vestibular system // Handbook of Clinical Neurology. / Eds J.M. Furman, T. Lempert. Germany: Elsevier, 2016. V. 137. Ch. 1. P. 1–16.
  • Kitagawa N., Ichihara S. Hearing visual motion in depth // Nature. 2002. V. 416. P. 172–174.
  • Krumbholz K., Hewson-Stoate N., Schonwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649–1655.
  • Lackner J.R. Induction of illusory self-rotation and nystagmus by a rotating sound-field // Aviation Space and Environmental Medicine. 1977. V. 48. No 2. P. 129–131.
  • Larsson P., Vastfjall D., Kleiner M. Perception of self-motion and presence in auditory virtual environments // Proceedings of the seventh annual workshop of Presence. Valencia. Spain. 2004. P. 252–258.
  • Leigh R. J., Zee D. S. The Neurology of Eye Movements. New York: Oxford Press, 2006. 646 p.
  • Lester G., Morant R. Apparent sound displacement during vestibular stimulation // Am.J. Psychol. 1970. V. 83. P. 554–566.
  • Lewald J., Karnath H. O. Sound lateralization during passive whole-body rotation // Eur. J. Neurosci. 2001. V. 13. P. 2268–2272.
  • Lewald J., Karnath H. O. The effect of whole-body tilt on sound lateralization // Eur. J. Neurosci. 2002. V. 16. P. 761–766.
  • Lopez C., Blanke O. The thalamocortical vestibular system in animals and humans // Brain Res. Rev. 2011. V. 67. P. 119–146.
  • McCrea R. A., Gdowski G.T., Boyle R., Belton T. Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eyemovement related neurons // J. Neurophysiol. 1999. V. 82(1). P. 416–428.
  • Orlov V. A., Gvozdeva A. P., Zavyalova V.V, Ushakov V. L., Andreeva I.G. Neural Substrates of the Auditory Motion Aftereffect: A Functional MRI Study // Proc. Comp. Sci. 2016. V. 88. P. 282–287.
  • Palmisano S., Allison R. S., Schira M. M., Barry R. J. Future challenges for vection research: definitions, functional significance, measures, and neural bases // Front. Psychol. 2015. V. 6. A. 193. DOI: 10.3389/ fpsyg.2015.00193.
  • Palmisano S., Kim J., Freeman T. C. A. Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth // J. Vis. 2012. V. 12. P. 1–14.
  • Palmisano S., Apthorp D., SenoT., Stapley P. J. Spontaneous postural sway predicts the strength of smooth vection // Exp. Brain Res. 2014. V. 232. P. 1185–1191.
  • Pavani F., Macaluso E., Warren J. D., Driver J., Gri ths T. D. A common cortical substrate activated by horizontal and vertical sound movement in the human brain // Curr. Biol. 2002. V. 12. N18. P. 1584–1590.
  • Philbeck J. W., Woods A. J., Arthur J., Todd J. Progressive locomotor recalibration during blind walking // Percept. Psychophys. 2008. V. 70(8). P. 1459–1470.
  • Previc F. H., Mullen T. J. A comparison of the latencies of visually induced postural change and self-motion perception // J. Vestib. Res. 1990. V. 1. P. 317–323.
  • Raphan T., Cohen B., Matsuo V. A velocity storage mechanism responsible for optokinetic nystagmus, optokinetic after-nystagmus and vestibular nystagmus // Control of Gaze by Brain Stem Neurons / Eds R. Bakers, A. Berthoz Amsterdam: Elsevier, 1977. P. 37–47.
  • Riecke B., Feuereissen D., Rieser J. J., McNamara, T. P. Selfmotion illusions (Vection) inVR – are they good for anything? // IEEEVirtual Real. 2012. P. 35–38.
  • Robinson D.A. Vestibular and optokinetic symbiosis: an example of explaining by modeling // Control of Gaze by Brain Stem Neurons / Eds R. Bakers, A. Berthoz Amsterdam: Elsevier, 1977. P. 49–58.
  • Ross J., Morrone M. C., Burr D. C. Compression of visual space before saccades // Nature. 1997. V. 386. P. 598–601.
  • Roy J. E., Cullen K. E. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei // J. Neurosci. 2004. V. 24. P. 2101–2111.
  • Soames R. W., Raper S. A. The influence of moving auditory fields on postural sway behaviour in man // Eur. J. Appl. Physiol. 1992. V. 65. P. 241–245.
  • Takakusaki K., Takahashi M., Obara K., Chiba R. Neural substrates involved in the control of posture // Advanced Robotics. 2017. V. 31(1–2) P. 2–23. DOI: 10.1080/01691864.2016.1252690
  • Teramoto W., Sakamoto S., Furune F., Gyoba J., Suzuki Y. Compression of auditory space during forward self-motion // PLoS One. 2012. V. 7(6). e39402. DOI:10.1371/ journal.pone.0039402
  • Thilo K. V., Kleinschmid A., Gresty M. A. Perception of selfmotion from peripheral optokinetic stimulation suppresses visual evoked responses to central stimuli // J. Neurophysiol. 2003. V. 90. P. 723–730.
  • Tokumaru O., Kaida K., Ashida H., Yoneda I., Tatsuno J. EEG topographical analysis of spatial disorientation // Aviat. Space Environ. Med. 1999. V. 70. P. 256–263.
  • Turchet L., Camponogara I., Cesari P. Interactive footstep sounds modulate the perceptual-motor aftereffect of treadmill walking // Exp. Brain Res. 2015. V. 233(1). P. 205–214.
  • Väljamäe A. Auditorily-induced illusory self-motion: A review // Brain Res. Rev. 2009. V. 61. P. 240–255.
  • Väljamäe A., Larsson P., Västfjäll D., Kleiner M. Auditory landmarks enhance circular vection in multimodal virtual reality // J. Acoust. Eng. Soc. 2009. V. 57. No 3. P. 111–120.
  • Vartanyan I. A., Andreeva I. G. А psychophysiological study of auditory illusions of the approach and withdrawal in the context of the perceptual environment // The Spanish Journal of Psychology. 2007. V. 10. No 2. P. 266–276.
  • Warren W. H. Self-motion: visual perception and visual control // Handbook of Perception and Cognition: Perception of Space and Motion, 2nd Edn / Eds W. Epstein, S. Rogers. San Diego: Acad. Press, 1995. 499 p.
  • Wenzel E. M., Arruda M., Kistler D. J., Wightman F. L. Localization using nonindividualized head-related transferfunctions // J. Acoust. Soc. Am. 1993. V. 94. P. 111–123.
  • Young L. R., Oman C. M. Model for vestibular adaptation to horizontal rotation // Aerosp Med. 1969. V. 40. P. 1076–1080.