• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

ANALYSIS OF THE YARBUS’S CONCEPTIONS ON THE ROLE OF THE BLIND RETINA IN COLOR PERCEPTION

© 2017 P. P. Nikolaev, G. I. Rozhkova

Institute for Information Transmission Problems (Kharkevich Institute), RAS 127051 Moscow, B. Karetny per., 19

Received 01 Dec 2016

In the last series of his papers published during 1975–1980 A. Yarbus tried to formulate general conceptions concerning the basic principles of retinal image processing in the human visual system. Focusing primarily on the problems of color vision, A.Yarbus intended to elaborate a comprehensive model imitating information processing in human with normal 3-chromatic color perception. The key idea of A. Yarbus concerned explanation the whole variety of color sensations and the phenomena of color constancy due to the usage of the signals from the so-called blind retina – the extreme retinal periphery where the formation of images is supposedly impossible and only di used light is present. In this paper, the most important of Yarbus’s experimental paradigms, findings, statements, and conclusions are discussed in relation to the classical theories of color perc eption and, in particular, to the fundamental theses of the Nyberg’s school. The perceptual model developed by A. Yarbus remained incomplete. Our retrospective analysis of this model revealed some intrinsic contradictions and restrictions that make it insuffcient regarding elaboration of a universal comprehensive model. However, as a whole, the experimental achievements and general ideas of A. Yarbus are principally interesting and deserve more thorough appreciation and further investigation.

Key words: color vision theory, blind retina, color constancy, human vision modeling

Cite: Nikolaev P. P., Rozhkova G. I. Analiz kontseptsii a. l. yarbusa o roli slepoi setchatki v tsvetovospriyatii [Analysis of the yarbus’s conceptions on the role of the blind retina in color perception]. Sensornye sistemy [Sensory systems]. 2017. V. 31(2). P. 116-138 (in Russian).

References:

  • Bongard M.M. Colorimetry on animals // Dokl. Ac. Sci. USSR. 1955. V. 103 (N2). P. 239–242 [in Russian].
  • Bongard M. M., Golubtsov K. V. On some types of horizontal interactions providing normal vision of images moving along the retina (modeling of some human visual functions) // Biofizika. 1970. V. 15. (N2). P. 361–373 [in Russian].
  • Logvinenko A.D. Visual perception of space. Moscow: MSU Press, 1981. 224 p. [in Russian].
  • Losev I. S., ShuraBura T. M. The model of perception of moving and stationary objects // Biofizika. 1981. V. 26. (N5). P. 854– 859 [in Russian].
  • Maximov V. V. Color transformation with changing illumination. Moscow: Nauka, 1984 [in Russian].
  • Maximov V. V., Nikolaev P. P. Color opponency and constancy of color perception // Biofizika. 1974. V. 19. (N1). P. 151–157 [in Russian].
  • Nikolayev P. P. Model of colour constancy for the case of continuous spectral functions // Biofizika. 1985. V. 30. (N1). P. 112–117 [in Russian].
  • Nyberg, N. D. Paradoxes of color vision // Priroda. 1960. No 8. P. 53–59 [in Russian].
  • Nyberg, N. D., Bongard, М. М., Nikolayev P. P. 1. About constancy in perception of coloration // Biofizika. 1971a. V. 16 (2). P. 285–293 [in Russian].
  • Nyberg, N. D., Nikolayev P. P., Bongard М. М. 2. About constancy in perception of coloration // Biofizika. 1971b. V. 16 (N6). P. 1052–1063 [in Russian].
  • Petrov A. P. Structure of the set of perceived colors. Moscow: Kurchatov Atomic Energy Institute, Preprint IAE No. 4050/15. 1984 [in Russian].
  • Petrov A. P., Zenkin G. M. The retinal images as sourses of information about the eye positions in the orbits and binocular mechanisms of the visual space formation // Human Physiology. 1976. V. 2 (N6). P. 932–939 [in Russian].
  • Rozhkova G. I., Nickolayev P. P., Shchadrin V. E. On the factors that determine the peculiarities of stabilized retinal image perception // Human Physiology. 1982. V. 8 (N4). P. 564– 571 [in Russian].
  • Rozhkova G. I., Belokopytov A. V., Gracheva M. A. Mysteries of the coneenriched rim and blind zone at the periphery of the human retina // Sensory systems. 2016. V. 30 (N4). P. 263–281 [in Russian].
  • Yarbus A. L. Eye movements and vision. NY: Plenum Press, 1967. 217 p. [Translated from Russian].
  • Yarbus A.L. Human visual system. I. Adequate visual stimulus // Biofizika. 1975a. V. 20 (N5). P. 916–919 [in Russian].
  • Yarbus A. L. Human visual system. II. The perceived colour. Biofizika. 1975b. V. 20 (N6). P. 1099–1104 [in Russian].
  • Yarbus A. L. Human visual system. III. The space of colour sensations // Biofizika. 1976a. V. 21 (N1). P. 150–152 [in Russian].
  • Yarbus A. L. Human visual system. IV. Opposite color di erence and anticolor. The first series of experiments // Biofizika. 1976b. V. 21 (N4). P. 735–738 [in Russian].
  • Yarbus A.L. Human visual system. V. Opposite color di erence and anticolor. The second series of experiments // Biofizika. 1976в. V. 21 (N5). P. 913–916 [in Russian].
  • Yarbus A. L. Human visual system. VI. Opposite colour difference and anticolour. Third series of experiments // Biofizika. 1977a. V. 22 (N1). P. 123–126 [in Russian].
  • Yarbus A. L. Human visual system. VII. Opposite color difference and anticolor. Fourth series of experiments // Biofizika. 1977b. V. 22 (N2). P. 328–333 [in Russian].
  • Yarbus A.L. Human visual system. VIII. Description of colour transformations by means of vector algebra // Biofizika. 1977в. V. 22 (N6). P. 1087–1094 [in Russian].
  • Yarbus A.L. On the work of human visual system. Simultaneous and successive contrast // Biofizika. 1979. V. 24 (N3). P. 524– 527 [in Russian].
  • Yarbus A. L. Human visual system. Combined role of drift and fast changes of retinal sensitivity // Biofizika. 1980. V. 25 (N3). P. 548–554 [in Russian].
  • Barghout L. Visual taxometric approach to image segmentation using fuzzy-spatial taxon cut yields contextually relevant regions. Information processing and management of uncertainty in knowledge-based systems //Springer international publishing, 2014. P. 163–173.
  • Barnard K., Martin L., Coath A., Funt B.. A comparison of colour constancy algorithms. Part two. Experiments with image data // IEEE Trans. Image Processing. 2002. V.11 (N9). P. 985–996.
  • Brill M. H. A device performing illuminant-invariant assessment of chromatic relations // J. Theor. Biol. 1978. V. 71. P. 473–478.
  • Brill M. H., West G. Chromatic Adaptation and Color Constancy: A Possible Dichotomy // Color Res. Applicat. 1986. V. 11 (3). P. 196–204.
  • Buchsbaum G. A spatial processor model for object-colour perception // J. Franklin Inst. 1980. V. 310. P. 1–26.
  • D’Zmura M, Iverson G. Colour constancy. I. Basic theory of two-stage linear recovery of spectral description for lights and surfaces // J. Opt. Soc. Amer. A. 1993. V. 10. P. 2148–2165.
  • Finlayson G. D., Schaefer G. Solving for colour constancy using a constrained dichromatic reflection model // Int. J. Computer Vision. 2001. V. 42 (3). P. 127–144.
  • Forsiyth D. A novel approach to color constancy // Intern. J. Computer Vision. 1990. V. 18(1). P. 5–36.
  • FuntB.V., DrewM.S.Color space analysis of mutual illumination // IEEE Trans. Pattern Anal. Mach. Intell. 1993. V. 15(12). P. 1319–1326.
  • Grassmann H. On the theory of compound colors // Phil. Mag. 1854. V. 7. P. 254–264.
  • Gregory R. L. The intelligent eye. London: Weidenfeld & Nicolson.1970.
  • Guth S. L., Massof R. W., Benzschawel T. Vector model for normal and dichromatic color vision // J. Opt. Soc. Amer. 1980. V. 70. No 2. P. 197–212.
  • Helmholtz H. von. Treatise on Physiological Optics. V. 3. Dover publications, 1867.
  • Hurlbert A. C. Formal connections between lightness algorithms // J. Opt. Soc. A. 1986. V. 3. P. 1684–1693.
  • Hurlbert A., Wolf K.Color contrast: a contributory mechanism to color constancy // Prog. Brain Res. 2004. V. 144. P. 147–160.
  • Helson H. Adaptation-level theory. N.Y.: Harper and Row. 1964.
  • HornB.K.P.Determining lightness from an image // Computer Graphics and Image Processing. 1974. V. 3(1). P. 277–299.
  • Kimmel R., Elad M., Shaked D., Keshet R, Sobel I. A variational framework for Retinex // Int. J. Computer Vision. 2003. V. 52 (1). P. 7–23.
  • Klinker G. J., Shafer S. A., Kanade T. A. Physical Approach to Color Image Understanding // Int. J. Computer Vision. 1990. V. 4. P. 7–38.
  • Kries von J. Influence of Adaptation on the Effects Produced by “Luminous Stimuli”. // Handbuch der Physiologie des Menshen, Vieweg, Braunschweig. 1905. V. 3. P. 109–282.
  • Land E. H., McCann J. J. Lightness and Retinex Theory // J. Opt. Soc. Am. 1971. V. 61(1). P. 1–11.
  • Land E.H. The Retinex theory of color vision // Sci. Amer., 1977. V. 237, P. 108–128.
  • Land E. H. An alternative technique for the computation of the designator in the Retinex theory of color vision // Proc. Nat. Acad. Aci. USA. 1986. V. 83. P. 3078–3080.
  • Marr D. The Computation of lightness by the primate retina // Vision Research. 1974. V. 14. P. 1377–1388.
  • McCann J. J., Hall J. A., Land E. H. Color mondrian experiments: The study of average spectral distribution // J. Opt. Soc. Amer. 1977. V. 67 (10). 1380 p.
  • Morel J. M., Petro A. B., Sbert C. Fast implementation of color constancy algorithms // IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2009. P. 106–110.
  • Nikolaev D. P., Nikolayev P. P. Linear color segmentation and its implementation // Color Vision and Image Understanding, 2004. V. 94. P. 115–139.
  • Nikolaev D. P., Nikolayev P. P. On Spectral Models and Colour Constancy Clues // 21st Europ. Conf. Model. Simulat. ECMS. Prague, Czech Republic. 2007. P. 318–323.
  • Nikolaev P. P., Rozhkova G. I. Yarbus’s conceptions on the general mechanisms of color perception // Perception. 2015. V. 44 (8–9). P. 952–972.
  • Nyberg N. Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen // Zeitschrift für Physik. 1928. V. 52(5). P. 406–419.
  • Petrov A. P., Kontsevich L. L. Properties of color images of surfaces under multiple illuminants // J. Opt. Soc. Am., A. 1994. V. 11(10). P. 2745–2749.
  • Rozhkova G. I., Nikolaev P. P. Visual percepts in the cases of binocular and monocular viewing stabilized test objects, ganzfeld stimuli, and prolonged afterimages // Perception. 2015. V. 44 (8–9). P. 934–951.
  • Rozhkova G. I., Nickolayev P. P., Shchadrin V. E. Perception of stabilized retinal stimuli in dichoptic viewing conditions // Vision Research. 1982. V. 22. P. 293–302.
  • Schrödinger E. Grundlinien einer Theorie der Farbenmetrik im Tagessehen // Annalen der Physik. 1920. V. 368 (63). P. 397–426.
  • Shafer S. A. Using color to separate reflection components // Color Res. Appl. 1985. V. 10. P. 210–218.
  • Tominaga S., Wandel B. A. Standart surface-reflectance model and Illuminant estimation // J. Opt. Soc. Am. A. 1996. V. 6 (4). P. 576–584.
  • Weinberg J. W. The geometry of colors // Gen. Relativ. Gravity. 1976. V. 7. P. 135–169.
  • Zenkin G. M., Petrov A. P. Transformation of the visual afterimage under subject’s eye and body movements and the visual field constancy mechanisms // Perception. 2015. V. 44 (8–9). P. 971–985.