• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

The differences in the neuronal metabolic activity in eye-specific layers of the dorsal lateral geniculate nucleus in cats with altered binocular vision

© 2015 P. Yu. Shkorbatova, S. N. Toporova, S. V. Alekseenko

Pavlov Institute of Physiology RAS, 199034 St-Petersburg, Makarov emb., 6

Received 14 Aug 2014

In order to study the changes in visual subcortical structures caused by early binocular vision impairments, the neuronal functional activity of the dorsal lateral geniculate nucleus (LGNd) was evaluated in monocularly deprived cats and cats with strabismus, caused by eye muscles tenotomy. The histochemical method was used to detect the cytochrome oxidase (CO) – the mitochondrial enzyme of respiratory chain, which activity level correlate to the neurons functional activity. The optical density in ocular-specific layers A and A1 was measured on the images of the LGNd stained sections in the projection of central 5 deg., and the contrast was calculated between the optical densities in these layers. It was found that in monocularly deprived cats the contrast value in the hemisphere contralateral to deprived eye was negative, and in the hemisphere ipsilateral to deprived eye was positive. These hemispheric differences of the K values were also observed in cats with unilateral (convergent and divergent) strabismus, as well as in cats with bilateral strabismus. Absolute value of K in the cats with impaired binocular vision was significantly higher than in the intact cats, whose difference K from zero was determined by the dominance of the one eye. We suggest that the observed differences in optical density between layers A and A1 of the LGNd are due to reduced functional activity of neurons that receive inputs from the deprived or strabismic eye. Such differen§ces observed in bilateral strabismus also suppose a decreased activity of the one eye.

Key words: cat, lateral geniculate body, strabismus, monocular deprivation, cytochrome oxidase

Cite: Shkorbatova P. Yu., Toporova S. N., Alekseenko S. V. Razlichiya metabolicheskoi aktivnosti v glazospetsifichnykh sloyakh dorsalnogo yadra naruzhnogo kolenchatogo tela koshek pri narushenii binokulyarnogo zreniya [The differences in the neuronal metabolic activity in eye-specific layers of the dorsal lateral geniculate nucleus in cats with altered binocular vision]. Sensornye sistemy [Sensory systems]. 2015. V. 29(1). P. 56-62 (in Russian).

References:

  • Алексеенко С.В., Шкорбатова П.Ю., Топорова С.Н., Солнушкин С.Д. Влияние косоглазия и монокулярной депривации на структуру межполушарных связей в проекционных зрительных полях коры кошки // Сенсорные системы. 2012. Т. 26. No 2. С. 106–116.
  • Меркульева Н.С., Макаров Ф.Н. Особенности активности цитохромоксидазы нейронов зрительной системы котят, выросших в условиях мелькающего освещения // Морфология. 2004. Т. 126. No 5. С. 20–23.
  • Рычкова С.И., Васильева Н.Н. Взаимоотношение монокулярных и бинокулярных механизмов пространственного восприятия при разных видах амблиопии // Сенсорные системы. 2011. Т. 25. No 3. С. 119–130.
  • Хватова К.В., Слышалова Н.Н., Вакурина А.Е. Амблиопия: зрительные функции, патогенез и принципы лечения // Зрительные функции и их коррекция у детей / Под ред. Аветисова С.Э., Кащенко Т.П., Шамшиновой А.М. М.: Медицина. 2005. С. 202– 220.
  • Чихман В.Н., Солнушкин С.Д., Алексеенко С.В. Компьютерный анализ изображений срезов зрительной коры мозга // Тр. 7-го Междунар. междисциплинарного конгр. “Нейронаука для медицины и психологии” / Под ред. Е.В. Лосевой, Н.А. Логиновой. М.: МАКС Пресс, 2011. С. 454.
  • Carr P.A., Yamamoto T., Staines W.A., Whittaker M.E., Nagy J.I. Quantitative histochemical analysis of cytochrome oxidase in rat dorsal root ganglia and its colocalization with carbonic anhydrase // Neuroscience. 1989. V. 33. No 2. P. 351–362.
  • Conway B.R., Boyd J.D., Stewart T.H., Matsubara J.A. The projection from V1 to extrastriate area 21a: a second patchy efferent pathway that colocalizes with the CO blob columns in cat visual cortex // Cerebral Cortex. 2000. V. 10. No 2. P. 149–159.
  • Daw N.W. Visual development. New York: Springer, 2006. 268 p.
  • Dyck R.H., Cynader M.S. An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitterrelated molecules in cat and monkey visual cortex // Proc. Natl. Acad. Sci. USA. 1993. V. 90. No 19. P. 9066– 9069.
  • Garraghty P.E., Besheer J.,Salinger W.L. Cell size in the lateral geniculate nucleus of cats reared with esotropia and sagittal transection of the optic chiasm // Brain Res Dev Brain Res. 1997. V 100 No 1. P. 127–129.
  • Gonzalez-Lima F., Cada A. Quantitative histochemistry of cytochrome oxidase activity // Сytochrome oxidase in neuronal metabolism and Alzheimer’s disease / Ed. F. Gonzalez-Lima. New York: Plenum Press, 1998. P. 55–90.
  • Guillery R.W., Stelzner D.J. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat // J. Comp. Neurol. 1970. V. 139. No 4. P. 413–421.
  • Hevner R.F., Wong-Riley M.T. Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system // J. Neurosci. 1990. V. 10. No 4. P. 1331–1340.
  • Horton J.C., Hocking D.R. Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex // Vis. Neurosci. 1998. V. 15. No 2. P. 289– 303.
  • Hubel D.H., Wiesel T.N. Brain and visual perception. New York.: Oxford Univ. Press, 2005. 744 p.
  • Ikeda H., Plant G.T., Tremain K.E. Nasal field loss in kittens reared with convergent squint: neurophysiological and morphological studies of the lateral geniculate nucleus // J. Physiol. 1977. V. 270. No 2. P. 345–366.
  • Jones K.R., Kalil R.E., Spear P.D. Effects of strabismus on responsivity, spatial resolution, and contrast sensitivity of cat lateral geniculate neurons // J. Neurophysiol. 1984. V. 52. P. 538–552.
  • Kalil R.E., Spear P. D., Langsetmo A. Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus // J. Neurophysiol. 1984. V. 52. P. 514–537.
  • Kiorpes L., Kiper D.C., O’Keefe L.P., Cavanaugh J.R., Movshon J.A. Neuronal сorrelates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia // J. Neurosci. 1998. V. 18. No 16. P. 6411–6424.
  • Murphy K.M., Jones D.G., Van Sluyters R.C. Cytochromeoxidase blobs in сat primary visual cortex // J. Neurosci. 1995. V. 15. No 6. P. 4196–4208.
  • Murphy K.M., Duffy K.R., Jones D.G., Mitchell D.E. Development of cytochrome oxidase blobs in visual cortex of normal and visually deprived cats // Cereb. Cortex. 2001. V. 11. No 2. P. 122–135.
  • Muckli L., Kiess S., Tonhausen N., Singer W., Goebel R., Sireteanu R. Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes // Vision Res. 2006. V. 46. No 4. P. 506–526.
  • Payne B.R., Lomber S.G. Age dependent modification of cytochrome oxidase activity in the cat dorsal lateral geniculate nucleus following removal of primary visual cortex // Vis. Neurosci. 1996. V. 13. No 5. P. 805–816.
  • Sanderson K.J. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat // J. Comp. Neurol. 1971. V. 143. No 1. P. 101–108.
  • Sasaki Y., Cheng H., Smith E.L., III, Chino Y. Effects of early discordant binocular vision on the postnatal development of parvocellular neurons in the monkey lateral geniculate nucleus // Exp. Brain Res. 1998. V. 118. No 3. P. 341–351.
  • Sengpiel F., Blakemore C. The neural basis of suppression and amblyopia in strabismus // Eye (Lond). 1996. V. 10. No 2. P. 250–258.
  • Sherman S.M., Hoffmann K. P., Stone J. Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats // J. Neurophysiol. 1972. V. 35. No 4. P. 532–541.
  • Sireteanu R., Fronius M., Singer W. Binocular interaction in the peripheral visual field of humans with strabismic and anisometropic amblyopia // Vision Res. 1981. V. 21. No 7. P. 1065–1074.
  • Sloper J.J., Headon M.P., Powell T.P. Changes in the size of cells in the monocular segment of the primate lateral geniculate nucleus during normal development and following visual deprivation // Brain Res. 1987. V. 528, No 2. P. 267–276.
  • Von Noorden G.K., Crawford M. L., Middle-Ditch P.R. The effects of monocular visual deprivation: disuse or binocular interaction // Brain Res. 1976. V. 111. No 2. P. 277–285.
  • Von Noorden G.K., Crawford M.L. The lateral geniculate nucleus in human strabismic amblyopia // Invest. Ophthalmol. Vis. Sci. 1992. V. 33. No 9. P. 2729–2732.
  • Von Noorden G.K., Middleditch P.R. Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations // Invest Ophthalmol. 1975. V. 14. No 9. P. 674– 683.
  • Webber A.L., Wood J. Amblyopia: prevalence, natural history, functional effects and treatment // Clinical and Experimental Optometry. 2005. V. 88. No 6. P. 365– 375.
  • Wiesel T.N., Hubel D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye // J. Neurophysiol. 1963. V. 26. P. 1003–1017.
  • Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry // Brain Res. 1979. V. 171, No 1. P. 11–28.
  • Wong-Riley M., Riley D.A. The effect of impulse blockade on cytochrome oxidase activity in the cat visual system // Brain. Res. 1983. V. 261. No 2. P. 185–193.