• 2025 (Vol.39)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

THREE-DIMENSIONAL OBJECT DETECTION BASED ON L-SHAPE MODEL IN AUTONOMOUS MOTION SYSTEMS

© 2025 M. O. Chekanov, S. V. Kudriashova, O. S. Shipitko

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
LTD Evocargo, Godovikova st. 9, build. 4, Moscow, 129085, Russia

Received 01 Oct 2024

The ability of automated vehicles (AVs) to determine the position of objects in three-dimensional space plays a key role in motion planning. The implementation of algorithms that solve this problem is particularly difficult for systems that use only monocular cameras, as depth estimation is a non-trivial task for them. Nevertheless, such systems are widespread due to their relative cheapness and ease of use. In this paper, we propose a method to determine the position of vehicles (the most common type of objects in urban scenes) in the form of oriented bounding boxes in birds’-eye view based on an image obtained from a single monocular camera. This method consists of two steps. In the first step, a projection of the visible boundary of the vehicle in the birds’-eye view is computed based on 2D obstacle detections and roadway segmentation in the image. The resulting projection is assumed to represent the noisy measurements of the two orthogonal sides of the vehicle. In the second step, an oriented bounding box is constructed around the obtained projection. For this stage, we propose a new algorithm for constructing the bounding box based on the assumption of the L-shape model. The algorithm was tested on a prepared real-world dataset. The proposed L-shape algorithm outperformed the best of the compared algorithms in terms of the Jaccard coefficient (Intersection over Union, IoU) by 2.7%

Key words: 3D object detection, L-shape, monocular object detection, autonomous driving

DOI: 10.31857/S0235009225010078  EDN: UUMPXE

Cite: Chekanov M. O., Kudriashova S. V., Shipitko O. S. Trekhmernaya detektsiya obektov na osnove l-shape modeli v avtonomnykh sistemakh dvizheniya [Three-dimensional object detection based on l-shape model in autonomous motion systems]. Sensornye sistemy [Sensory systems]. 2025. V. 39(1). P. 66–76 (in Russian). doi: 10.31857/S0235009225010078

References:

  • Shipitko O.S., Teteryukov D.O. Razrabotka algoritma otsenki prostranstvennogo polozheniya korobok dlya avtomatizatsii protsessa formirovaniya zakazov na skladakh [Development of an algorithm for estimating the spatial position of boxes to automate the process of order formation in warehouses]. Materialy VI Vserossiyskoy molodezhnoy shkoly po robototekhni. Obschestvo s ogranichennoy otvetstvennostyu ”Volgogradskoe nauchnoe izdatelstvo” (Volgograd). 2017. P. 9-18 (in Russian)
  • Arnon D.S., Gieselmann J. P. A linear time algorithm for the minimum area rectangle enclosing a convex polygon, 1983.
  • Billings G., Johnson-Roberson M. Silhonet: An rgb method for 6d object pose estimation IEEE Robotics and Automation Letters, 2019. V. 4(4). P. 3727-3734. DOI: 10.48550/arXiv.1809.06893
  • Chen X., Kundu K., Zhang Z., Ma H., Fidler S., Raquel Urtasun Monocular 3d object detection for autonomous driving Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. P. 2147-2156. DOI: 10.1109/CVPR.2016.236
  • Fan Z., Zhu Y., He Y., Sun Q., Liu H., He J. Deep learning on monocular object pose detection and tracking: A comprehensive overview ACM Computing Surveys, 2022. V. 55(4). P. 1-40. DOI: 10.1145/3524496
  • Geiger A., Lenz P., Stiller C., Urtasun, R. Vision meets robotics: The kitti dataset The International Journal of Robotics Research, 2013. V. 32(11). P. 1231-1237. DOI: 10.1177/0278364913491297
  • Jiang D., Li G., Sun Y., Hu J., Yun J., Liu Y. Manipulator grabbing position detection with information fusion of color image and depth image using deep learning Journal of Ambient Intelligence and Humanized Computing, 2021. V. 12. P. 10809-10822. DOI: 10.1007/s12652-020-02843-w
  • Kim Y., Kim J., Koh J., Choi J. W. Enhanced Object Detection in Bird’s Eye View Using 3D Global Context Inferred From Lidar Point Data 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019. P. 2516-2521. DOI: 10.1109/IVS.2019.8814276
  • Kuhn H. W. The Hungarian method for the assignment problem Naval research logistics quarterly, 1955. V. 2(1‐2). P. 83-97. DOI: 10.1002/nav.3800020109
  • Labayrade R., Aubert D., Tarel J.P. Real time obstacle detection in stereovision on non flat road geometry through” v-disparity” representation Intelligent Vehicle Symposium, 2002. IEEE, 2002. V. 2. P. 646-651. DOI: 10.1109/IVS.2002.1188024
  • Liu X., Xue N., Wu T. Learning auxiliary monocular contexts helps monocular 3d object detection Proceedings of the AAAI Conference on Artificial Intelligence, 2022. V. 36(2). P. 1810-1818. DOI: 10.1609/aaai.v36i2.20074
  • Liu Y., Geng L., Zhang W., Gong Y., Xu Z. Survey of video based small target detection Journal of Image and Graphics, 2021а. V. 9(4). P. 122-134. DOI: 10.18178/JOIG.9.4.122-134
  • Liu Z., Zhou D., Lu F., Fang J., Zhang L. Autoshape: Real-time shape-aware monocular 3d object detection Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021б. P. 15641-15650. DOI: 10.1109/ICCV48922.2021.01535
  • Sholomov D. L. Application of shared backbone DNNs in ADAS perception systems ICMV, 2020. P. 1160525. DOI: 10.1117/12.2586932
  • Smagina A.A., Shepelev D.A., Ershov E.I., Grigoryev A.S. Obstacle detection quality as a problem-oriented approach to stereo vision algorithms estimation in road situation analysis Journal of Physics: Conference Series. IOP Publishing, 2018. V. 1096(1). P. 012035. DOI: 10.1088/1742-6596/1096/1/012035
  • Tekin B., Sinha S.N., Fua P. Real-time seamless single shot 6d object pose prediction Proceedings of the IEEE conference on computer vision and pattern recognition, 2018. P. 292-301. DOI: 10.1109/CVPR.2018.00038
  • Wang H., Wang Z., Lin L., Xu F., Yu J., Liang H.. Optimal vehicle pose estimation network based on time series and spatial tightness with 3D lidars Remote Sensing, 2021. V. 13(20). P. 4123. DOI: 10.3390/rs13204123
  • Wang P. Research on comparison of lidar and camera in autonomous driving Journal of Physics: Conference Series. IOP Publishing, 2021. V. 2093(1). P. 012032. DOI: 10.1088/1742-6596/2093/1/012032
  • Wu D., Liao M. W., Zhang W. T., Wang X.G., Bai X., Cheng W. Q., Liu W. L. You only look once for panoptic driving perception, 2022, V. 19. P. 550-562. DOI: 10.1007/s11633-022-1339-y
  • Yu Q., Araújo H., Wang H. A stereovision method for obstacle detection and tracking in non-flat urban environments Autonomous Robots, 2005. V. 19. P. 141-157. DOI: 10.1007/s10514-005-0612-6
  • Zhang Z., Weiss, Hanson Qualitative obstacle detection 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1994. P. 554-559. DOI:10.1109/CVPR.1994.323881
  • Zhu Z., Zhang Y., Chen H., Dong Y., Zhao S., Ding W., Zhong J., Zheng S. Understanding the Robustness of 3D Object Detection With Bird’s-Eye-View Representations in Autonomous Driving Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. P. 21600-21610. DOI: 10.1109/CVPR52729.2023.02069