• 2025 (Vol.39)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

NICOTINAMIDE-STREPTOZOTOCIN-INDUCED TYPE 2 DIABETES MELLITUS LEADS TO IMPAIRED FUNCTION OF THE MAIN OLFACTORY SYSTEM IN MALE WISTAR RATS

© 2025 А. V. Gorskaya, O. V. Chistyakova, D. S. Vasiliev

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Toreza Ave, St. Petersburg, 194223 Russia

Received 04 Sep 2024

Patients with diabetes mellitus have a decreased olfactory function compared to healthy individuals. Hyposmia is more common in type 2 diabetes (DM2) and is characterized by a decreased ability to recognize odors, impaired olfactory memory, which reduces the quality of life of patients. The mechanisms of hyposmia require studies in animal models, but no such studies have been performed in most commonly used animal models of DM2. The aim of the present study was to investigate olfactory function in the model of nicotinamide-streptozotocin-induced DM2 in rats using widely used behavioral tests of food search performance by smell and olfactory preference. The model of DM2 in male rats showed a decrease in performance and an increase in the time spent on searching for food objects by smell, compared to the control group, which suggests that diabetic animals develop hyposmia. The results of the test for differentiation of the pheromonal mimetic isovaleric acid from bio-indifferent odorants showed no differences between the groups. These results indicate that the development of DM2 in adult rats predominantly affects the functioning of the main olfactory system rather than the functioning of the additional system responsible for the perception of pheromones and pheromonal mimetics.

Key words: Type 2 diabetes mellitus, olfaction, rat, food search performance test, olfactory preference test, nicotinamide- streptozotocin-induced model

DOI: 10.31857/S0235009225010067  EDN: UUOHUA

Cite: Gorskaya А. V., Chistyakova O. V., Vasiliev D. S. Nikotinamid-streptozototsin-indutsirovannyi sakharnyi diabet 2-go tipa privodit k narusheniyu funktsionirovaniya osnovnoi obonyatelnoi sistemy u krys-samtsov linii wistar [Nicotinamide-streptozotocin-induced type 2 diabetes mellitus leads to impaired function of the main olfactory system in male wistar rats]. Sensornye sistemy [Sensory systems]. 2025. V. 39(1). P. 56–63 (in Russian). doi: 10.31857/S0235009225010067

References:

  • Shuklina M.N. Osobennosti obonyatel’noj chuvstvitel’nosti cheloveka k zapaham feromonal’nogo tipa [Peculiarities of human olfactory sensitivity to pheromonal-type odors]. Diss. kand. biol. nauk [Diss. for the degree of cand. of biol. sciences]. 2012. 131 p (in Russian).
  • Amoore J.E. Specific anosmia and the concept of primary odors. Chemical senses. 1977. V. 2(3). P. 267-281. https://doi.org/10.1093/chemse/2.3.267
  • Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014. V. 30(1). P. 1-9. https://doi. or/10.1016/j.nut.2013.05.013
  • Baum M.J. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Frontiers in neuroanatomy. 2012. V. 6. P. 20. https://doi.org/10.3389/fnana.2012.00020
  • Beny Y., Kimchi T. Conditioned odor aversion induces social anxiety towards females in wild‐type and TrpC2 knockout male mice. Genes, Brain and Behavior. 2016. V. 15(8). P. 722-732. https://doi.org/10.1111/gbb.12320
  • Brahmachary R.L. Ecology and chemistry of mammalian pheromones. Endeavour. 1986. V. 10(2). P. 65-68. https://doi.org/10.1016/0160-9327(86)90132-8
  • Deer J., Koska J., Ozias M., Reaven P. Dietary models of insulin resistance. Metabolism. 2015. V. 64(2). P. 163-171. https://doi.org/10.1016/j.metabol.2014.08.013
  • Falkowski B., Chudziński M., Jakubowska E., Duda-Sobczak A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol Arch Intern Med. 2017. V. 127(7—8). P. 476—480. https://doi.org/10.20452/pamw.4073
  • Fraser E.J., Shah N.M. Complex chemosensory control of female reproductive behaviors. PLoS One. 2014. V. 9(2). P. e90368. https://doi.org/10.1371/journal.pone.0090368
  • Gascón C., Santaolalla F., Martínez A., Sánchez Del Rey A. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: a new approach to the determination of renal function. Acta oto-laryngologica. 2013. V. 133(4). P. 400—404. https://doi.org/10.3109/0001648 9.2012.746471
  • Ghasemi A., Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J. 2023. V. 22. P. 274-294. https://doi.org/10.17179/excli2022-5720.
  • Gouveri E., Katotomichelakis M., Gouveris H., Danielides V., Maltezos E., Papanas N. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014. V. 65(10). P. 869—876. https://doi.org/10.1177/0003319714520956
  • Ishii K.K., Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neuroscience Research. 2019. V. 140. P. 59-76. https://doi.org/10.1016/j. neures.2018.10.009
  • Islam S., Choi H. Nongenetic Model of Type 2 Diabetes: A Comparative Study. Pharmacology. 2007. № 79. P. 243–249. https://doi.org/10.1159/000101989.
  • Jiménez A., Herrera-González A., Organista-Juárez D., Estudillo E., Velasco I., Guerrero-Vargas N. N., Guzmán-Ruíz M. A., Guevara-Guzmán R. Diabetes Induces Permanent Deleterious Effects in the Olfactory Bulb Associated with Increased Tyrosine Hydroxylase Expression and ERK1/2 Phosphorylation. ACS Chem Neurosci 2022. V. 13. P. 2821–2828. https://doi.org/10.1021/acschemneuro.2c00319
  • Jiménez A., Organista-Juárez D., Torres-Castro A., Guzmán-Ruíz M.A, Estudillo E., Guevara-Guzmán R. Olfactory dysfunction in diabetic rats is associated with miR-146a overexpression and inflammation. Neurochemical Research. 2020. V. 45(8). P. 1781-1790. https://doi.org/10.1007/s11064—020—03041-y
  • King A. J.F. The use of animal models in diabetes research. British Journal of Pharmacology. 2012. V. 166(3). P. 877—894. https://doi.org/10.1111/j.1476—5381.2012.01911.x
  • Le Floch J. P., Le Lièvre G., Labroue M., Paul M., Peynegre R., Perlemuter L. et al. Smell dysfunction and related factors in diabetic patients. Diabetes care. 1993. V. 16.(6). P. 934—937. https://doi.org/10.2337/diacare.16.6.934
  • Lietzau G., Davidsson W., Östenson C. G., Chiazza F., Nathanson D., Pintana H., Skogsberg J., Klein T., Nyström T., Darsalia V., Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta neuropathologica communications. 2018. V. 6. P. 1–15. https://doi.org/10.1186/s40478-018-0517-1
  • Michael R. P., Bonsall R. W., Warner P. Human vaginal secretions: volatile fatty acid content. Science. 1974. V. 186(4170). P. 1217-1219. https://doi.org/10.1126/science.186.4170.1217
  • Marino F., Salerno N., Scalise M., Salerno L., Torella A., Molinaro C., Chiefalo A., Filardo A., Siracusa C., Panuccio G. Streptozotocin-Induced Type 1 and 2 Diabetes Mellitus Mouse Models Show Different Functional, Cellular and Molecular Patterns of Diabetic Cardiomyopathy. International Journal of Molecular Sciences. 2023. V. 24(2). 1132. https://doi.org/10.3390/ijms24021132
  • Monereo-Sánchez J., Jansen J. F.A., Köhler S., van Boxtel M. P.J., Backes W. H., Stehouwer C. D.A., Kroon A. A., Kooman J. P., Schalkwijk C. G., Linden D. E.J., Schram M. T. The association of prediabetes and type 2 diabetes with hippocampal subfields volume: The Maastricht study. NeuroImage: Clinical. 2023. V. 39. 103455 https://doi.org/10.1016/j.nicl.2023.103455.
  • Rabiller G., Ip Z., Zarrabian S., Zhang H., Sato Y., Yazdan-Shahmorad A., Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging and disease. 2024, V. 15(5). P. 2255-2270 https://doi. org/10.14336/AD.2023.1106
  • Pause B. M. Are androgen steroids acting as pheromones in humans? Physiology & behavior. 2004. V. 83(1). P. 21–29. https://doi.org/10.101/j.physbeh.26004.07.019.
  • Rivière S, Soubeyre V, Jarriault D, Molinas A, Léger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep. 2016 V. 6. P.34011. https://doi.org/10.1038/srep34011
  • Su C. Y., Menuz K., Carlson J. R. Olfactory perception: receptors, cells, and circuits. Cell. 2009. V. 139(1). P. 45–59. https://doi.org/10.1016/j.cell.2009.09.015
  • Várkonyi T., Körei A., Putz Z., Kempler P. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy? Angiology. 2014. V. 65(10). P. 857—860. https://doi.org/10.1177/0003319714526971
  • Weinstock R. S., Wright H. N., Smith D. U. Olfactory dysfunction in diabetes mellitus. Physiology & behavior. 1993. V. 53(1). P. 17–21. https://doi. org/10.1016/0031—9384(93)90005-z
  • Yahyaeipour H., Ganji F., Sepehri H., Nazari Z. The effect of type 2 diabetes on the olfactory bulb structure of Wistar rats. Nova Biologica Reperta. 2023. V. 10(1). P. 11–16. https://doi.org/10.29252/nbr.10.1.11
  • Zaghloul H., Pallayova M., Al-Nuaimi O., Hovis K. R., Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine. 2018. V. 35(1). P. 41–52. https://doi.org/10.1111/dme.13542