To obtain a photo that reproduces the original scene as accurately as possible, it is necessary to solve the problem of
color correction, that is, to find a mapping that translates the coordinates of the camera color space (RGB) into the
coordinates of the human color space (CIE XYZ). In this article, we consider color correction using lookup tables, pre-
built for various lighting conditions. This approach allows you to achieve high speed and accuracy when applying color
correction on the device, but requires large amounts of RAM, which, for example, mobile phones do not have. We propose a
method for automatic thinning of a set of search tables without loss of accuracy of color correction. The method is
based on clustering of the mappings that specify the color correction. To compare the mappings, we propose a criterion
for their similarity based on the maximum difference of the generated colors in the target space of a standard CIE XYZ
observer. For the proposed criterion, the article provides an effective calculation method and, together with a theorem
justifying the correctness of the method.
Key words:
adaptive color correction, similarity criterion of mapping, lookup table, mathematical programming, clustering
DOI: 10.31857/S0235009224040077
EDN: ACVQWZ
Cite:
Kharkevich M. V., Basova O. A., Konovalenko I. A.
Vychislitelno effektivnaya adaptivnaya tsvetovaya korrektsiya
[Computationally efficient adaptive color correction].
Sensornye sistemy [Sensory systems].
2024.
V. 38(4).
P. 78–84 (in Russian). doi: 10.31857/S0235009224040077
References:
- Konovalenko I. A. Kriterii i algoritmy vychisleniya tochnosti proektivnoj normalizacii izobrazhenij [Criteria and algorithms for calculating the accuracy of projective normalization of images]. PhD thesis. Moscow, 2021. 136 p. (in Russian).
- Nikolaev D. P., Nikolaev P. P., Gladilin S. A., Bozhkova V. P. Osnovy cvetovoj teorii v tekhnicheskom zrenii. I. Vvedenie v cvetovuyu teoriyu [Fundamentals of color theory in technical vision. I. Introduction to Color Theory]. Moscow, Mir nauki, 2021. 40 p. (in Russian).
- Nikolaev P. P., Nikolaev D. P., Gladilin S. A., Basova O. A., Yarykina M.S. Sbornik zadach po obrabotke izobrazhenij i tekhnicheskomu zreniyu [Collection of tasks on image processing and technical vision]. Moscow, 2023. 78 p. (in Russian).
- Shashlov A.B. Osnovy svetotekhniki [Fundamentals of lighting engineering]. Moscow: Logos, 2016. (in Russian).
- Fernando R., Matt P. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Addison-Wesley Professional, 2005. 814 p.
- Finlayson G.D., Michal M., Anya H. Root-polynomial colour correction. Color and Imaging Conference. Society of Imaging Science and Technology, 2011. V. 19. P. 115–119.
- Gasparini F., Schettini R. Color correction for digital photographs. 12th International Conference on Image Analysis and Processing, 2003. Proceedings. IEEE, 2003. P. 646–651. DOI: 10.1109/ICIAP.2003.1234123
- Han D. Real-time color gamut mapping method for digital TV display quality enhancement. IEEE Transactions on consumer Electronics. IEEE, 2004. V. 50. P. 691–698. DOI: 10.1109/TCE.2004.1309450
- Ives H.E. The transformation of color-mixture equations from one system to another. Journal of the Franklin Institute. 1915. V. 180. P. 673–701.
- Kim Y.T., Cho Y.H., Lee C.H., Ka Y.H. Color look-up table design for gamut mapping and color space conversion. International Conference on Digital Production Printing and Industrial Applications. 2003. P. 28–29.
- Luther R. Aus dem gebiet der farbreizmetrik, Zeitschrift fur Technishe Physik. 1927. V. 12. P. 540–558.
- Mantiuk R., Mantiuk R., Tomaszewska A., Heidrich W. Color correction for tone mapping. Computer graphics forum. Oxford. Blackwell Publishing Ltd, 2009. V. 50. P. 193–202.
- Moroney N. Local color correction using non-linear masking. Color and Imaging conference. California. Society of Imaging Science and Technology, 2000. V. 8. P. 108–111.
- Morovic J., Luo M.R. The fundamentals of gamut mapping: A survey. Journal of Imaging Science and Technology. Derby. The Society for Imaging Science and Technology, 2001. V. 45. P. 283–290.
- Sari Y.A., Ginardi R.V. H., Suciati N. Color correction using improved linear regression algorithm. 2015 International Conference on Information & Communication Technology and Systems (ICTS). IEEE, 2015. P. 73–78. DOI: 10.1109/ICTS.2015.7379874.
- Solomatov G., Akkaynak D. Spectral Sensitivity Estimation Without a Camera. 2023 IEEE International Conference on Computational Photography (ICCP). IEEE, 2023. P. 1–12. DOI: 10.1109/ICCP56744.2023.10233713
- Soshin K.V., Nikolaev D.P., Ershov E.I., Tchobanou M.K. A scalable rational color correction for an image. Patent RF. № WO2023121500A1. 2023.