• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Recognition of projectively transformed planar figures. XVII. Using plucker’s reciprocity theorem to describe ovals with an external fixed point

© 2024 P.P. Nikolaev

Institute for Information Transmission Problems “Kharkevich Institute” RAS, 127994 Moscow, Bolshoy Karetny per., 19
Smart Engines Service LLC, 117312, Moscow, Prospect 60-Letiya Oktyabrya, 9, Russia

Received 29 Jan 2024

An approach to a projectively invariant description of a family of ovals (o) in scenes where the figure o is given in a composition with an external point, P, fixed in its plane is considered, and in cases where o has hidden symmetries (central or axial), the position of P is not specified in the form of an additional condition defining the scene, but can be calculated through the symmetry parameters. The invariant description, as a general universal method for numerical processing of compositions like “o + ext-P”, is proposed to be implemented in the form of Wurf mappings.The method uses the apparatus of dual pairs (DP) and wurf functions,previously developed and described by us, which are a product of decomposition of statements of the reciprocity theorem proposed by J. Plьcker to describe the properties of quadratic curves (conics).Illustrated examples of special cases of the “o + ext-P”composition are considered and discussed, actually completing the topic of studying the scenes like “an oval and a linear element of the plane”, which are classified according to the types of symmetry of o.

Key words: oval, center and axis of symmetry, Plücker pole and polar curve, dual pair, harmonic wurf, planar wurf, wurf function, descriptor, Lamй curve

DOI: 10.31857/S0235009224020059  EDN: DDKZPO

Cite: Nikolaev P. P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. xvii. privlechenie teoremy vzaimnosti plyukkera dlya opisaniya ovalov s vneshnei fiksirovannoi tochkoi [Recognition of projectively transformed planar figures. xvii. using plucker’s reciprocity theorem to describe ovals with an external fixed point]. Sensornye sistemy [Sensory systems]. 2024. V. 38(2). P. 62–93 (in Russian). doi: 10.31857/S0235009224020059

References:

  • Akimova G.P., Bogdanov D.S., Kuratov P.A. Zadacha proektivno invariantnogo opisanija ovalov s nejavno vyrazhennoj central’noj i osevoj simmetriej i princip dvojstvennosti Pljukkera [Task projectively the invariant description of ovals with implicitly expressed central and axial symmetry and the principle of a duality of Plucker]. Trudy ISA RAN [Proceedings of the ISA RAS]. 2014. V. 64(1). P. 75–83. (in Russian).
  • Balitsky A.M., Savchik A.V., Gafarov R.F., Konovalenko I.A. O proektivno invariantnyh tochkah ovala s vydelennoj vneshnej pryamoj. [On projective invariant points of oval coupled with external line]. Problemy peredachi informacii [Problems of Information Transmission]. 2017. V. 53(3). P. 84–89. (in Russian). https://doi.org/10.1134/S0032946017030097
  • Glagolev N.A. Proektivnaya geometriya [Projective geometry]. Moscow, Vysshaya shkola [High school]. 1963. 344 p. (in Russian).
  • Deputatov V.N. K voprosu o prirode ploskostnyh vurfov [On the nature of the plane wurfs]. Matematicheskij sbornik [Mathematical collection]. 1926. V. 33(1). P. 109–118. (in Russian).
  • Kartan Je. Metod podvizhnogo repera, teoriya nepreryvnykh grupp i obobshchennye prostranstva. Sb. Sovremennaya matematika. Kniga 2-ya [The method of a moving ranging mark, the theory of continuous groups and generalized spaces]. Moscow, Leningrad, Gosudarstvennoe tehniko-teoreticheskoe izdatel’stvo [State technical and theoretical publishing]. 1933. 72 p. (in Russian).
  • Modenov P.S. Analiticheskaya geometriya [Analytic geometry]. Moscow, Izdatel’stvo moskovskogo universiteta [Moscow University Press]. 1969. 699 p. (in Russian).
  • Nikolaev P.P. Metod proektivno invariantnogo opisaniya ovalov s osevoi libo tsentral’noi simmetriei [A method for projectively-invariant description of ovals having axial or central symmetry]. Informatsionnye tekhnologii i vychislitel’nye sistemy. 2014. No. 2. P. 46–59. (in Russian).
  • Nikolaev P.P. O zadache proektivno invariantnogo opisaniya ovalov s simmetriyami trekh rodov [A projective invariant description of ovals with three possible symmetry genera]. Vestnik RFFI [RFBR Information Bulletin]. 2016. V. 92(4). P. 38–54. DOI:10.22204/2410-4639-2016-092-04-38-54 (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. II. Oval v kompozitsii s dual’nym ehlementom ploskosti. [Recognition of projectively transformed planar figures. II. An oval in a composition with a dual element of a plane]. Sensornye sistemy [Sensory systems]. 2011. V. 25(3). P. 245–266. (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. VIII. O vychislenii ansamblya rotacionnoj korrespondencii ovalov s simmetriej vrashheniya [Recognition of projectively transformed planar figures. VIII. On computation of the ensemble of correspondence for “rotationally symmetric” ovals]. Sensornye sistemy [Sensory systems]. 2015. V. 29(1). P. 28–55. (in Russian).
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. X. Metody poiska okteta invariantnykh tochek kontura ovala – itog vklyucheniya razvitoi teorii v skhemy ego opisaniya [Recognition of projectively transformed planar figures. X. Methods for finding an octet of invariant points of an oval contour – the result of introducing a developed theory into the schemes of oval description]. Sensornye sistemy [Sensory systems]. 2017. V. 31(3). P. 202–226. (in Russian).
  • Nikolaev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. XII. O novykh metodakh proektivno invariantnogo opisaniya ovalov v kompozitsii s lineinym elementom ploskosti [Recognition of projectively transformed planar figures. XII. On new methods for projectively-invariant description of ovals in composition with a linear element of a plane]. Sensornye sistemy [Sensory systems]. 2019. V. 33(1). P. 15–29. (in Russian). https://doi.org/10.1134/S0235009219030077
  • Nikolaev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. XV. Metody poiska osej i centrov ovalov s simmetriyami, ispol’zujushhie set dual’nyh par libo triady chevian [Recognition of projectively transformed planar figures. XV. Methods for searching for axes and centers of ovals with symmetries, using a set of dual pairs of cevian triads]. Sensornye sistemy [Sensory systems]. 2021. V. 35(1). P. 55–78. (in Russian). https://doi.org/10.31857/S0235009221010054
  • Nikolayev P.P. Raspoznavanie proektivno preobrazovannykh ploskikh figur. XVI. Oktet proektivno stabil’nykh vershin ovala i novye metody etalonnogo ego opisaniya, ispol’zuyushchie oktet. [Recognition of projectively transformed planar figures. XIV. The octet of projectively stable vertices of the oval and new methods for its reference description using the octet]. Sensornye sistemy [Sensory sistems]. 2022. V. 36(1). P. 61–89. (in Russian). https://doi.org/10.31857/S023500922201005X
  • Savelov A.A. Ploskie krivye. Sistematika, svojstva, primeneniya [Flat curves. Systematics, properties, applications]. M. Gos. izd-vo fiziko-matematicheskoj literatury [Moscow. State publishing house of physical and mathematical literature], 1960. 293 p. (in Russian).
  • Savchik A.V., Nikolaev P.P. Teorema o peresechenii T- i Hpolyar [The Theorem of T- and H-Polars Intersections Count]. Informacionnye process [Information processes]. 2016. V. 16(4). P. 430–443 (in Russian).
  • Brugalle E. Symmetric plane curves of degree 7: Pseudoholomorphic and algebraic classifications. Journal fur Die Reine und Angewandte Mathematic (Crelles Journal). 2007. V. 612. P. 1–38. https://doi.org/10.1515/CRELLE.2007.086
  • Carlsson S. Projectively invariant decomposition and recognition of planar shapes. International Journal of Computer Vision. 1996. V. 17(2). P. 193–209. https://doi.org/10.1007/BF00058751
  • Faugeras O. Cartan’s moving frame method and its application to the geometry and evolution of curves in the euclidean, affine and projective planes. Joint European-US Workshop on Applications of Invariance in Computer Vision. Berlin, Heidelberg. Springer, 1993. P. 9–46. https://doi.org/10.1007/3-540-58240-1_2
  • Gardner M. Piet Hein’s Superellipse, Mathematical Carnival. A New Round-Up of Tantalizers and Puzzles from Scientific American. New York. Vintage Press, 1977. 240–254 p.
  • Hann C.E., Hickman M.S. Projective curvature and integral invariants. Acta Applicandae Mathematica. 2002. V. 74(2). P. 177–193. https://doi.org/10.1023/A:1020617228313
  • Hoff D., Olver P.J. Extensions of invariant signatures for object recognition. Journal of mathematical imaging and vision. 2013. V. 45. P. 176–185. https://doi.org/10.1007/s10851-012-0358-7
  • Itenberg I.V., Itenberg V.S. Symmetric sextics in the real projective plane and auxiliary conics. Journal of Mathematical Sciences. 2004. V. 119(1). P. 78–85. https://doi.org/10.1023/B:JOTH.0000008743.36321.72
  • Lebmeir P., Jurgen R.-G. Rotations, translations and symmetry detection for complexified curves. Computer Aided Geometric Design. 2008. V. 25. P. 707–719. https://doi.org/10.1016/j.cagd.2008.09.004
  • Musso E., Nicolodi L. Invariant signature of closed planar curves. Journal of mathematical imaging and vision. 2009. V. 35(1). P. 68–85. https://doi.org/10.1007/s10851-009-0155-0
  • Olver P.J. Geometric foundations of numerical algorithms and symmetry. Applicable Algebra in Engineering, Communication and Computing. 2001. V. 11. P. 417–436. https://doi.org/10.1007/s002000000053
  • Sanchez-Reyes J. Detecting symmetries in polynomial Bezier curves. Journal of Computational and Applied Mathematics. 2015. V. 288. P. 274–283. https://doi.org/10.1016/j. cam.2015.04.025