• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Insect ocelli: ecology, physiology, and morphology of the accessory visual system

© 2024 I. Yu. Severina, E. S. Novikova, M. I. Zhukovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223, Saint Petersburg, Thorez Pr., 44, Russia

Received 13 Feb 2024

The peripheral photoreceptor system of adult insects and insect larvae of hemimetabolous insects consists of a pair of compound facet eyes and several simple chamber eyes, the ocelli. The origin of the ocelli is attributed to the simple eyes of crustacean larvae; the ocelli, along with the compound eyes, present the basic plan of the photosensitive system of insects. The evolution of these light-sensitive organs is closely related to flight, allowing to maintain the position of the body in relation to the horizon, they have high sensitivity and fast signal processing, which is critical for small animals easily carried away by air currents. In low light conditions, ocelli increase in size and in some cases also increase light sensitivity through light-reflecting tapetum, loss of polarization sensitivity and color separation. When light intensity is reduced below a critical level, such as in cave dwellers, ocelli disappear. In actively moving diurnal insects, ocelli can acquire polarization sensitivity, features of object vision, and several, mostly two, spectral types of photoreceptors. The high speed of the ocellar visual system is ensured by a small number of synaptic connections projecting to motor circuits.

Key words: ocelli, insect vision, simple eye

DOI: 10.31857/S0235009224020033  EDN: DDRSHW

Cite: Severina I. Yu., Novikova E. S., Zhukovskaya M. I. Otselli nasekomykh: ekologiya, fiziologiya, morfologiya vspomogatelnoi zritelnoi sistemy [Insect ocelli: ecology, physiology, and morphology of the accessory visual system]. Sensornye sistemy [Sensory systems]. 2024. V. 38(2). P. 35–53 (in Russian). doi: 10.31857/S0235009224020033

References:

  • Gorokhov A.B. Primitive Titanoptera and early evolution of Polyneoptera. Chteniya pamyati N.A. Kholodkovskogo. 2004. V. 57(1). P. 1–54. (in Russian).
  • Gribakin F.G. Mekhanizmy fotoretseptsii nasekomykh [Mechanisms of insect photoreception]. Leningrad: Nauka. 1981. 213 p. (in Russian).
  • Chayka S. Yu. Neuromorphology of insects. Moscow: 2010. 396 p. (in Russian).
  • Ball H.J. The receptor site for photic entrainment of circadian rhythms in the cockroach. Periplaneta americana. Annals of the Entomological Society of America. 1971. V. 64. P. 1010–1015. https://doi.org/10.1093/aesa/64.5.1010
  • Bank S., Bradler S. A second view on the evolution of flight in stick and leaf insects (Phasmatodea). BMC ecology and evolution. 2022. V. 22. Article 62. https://doi.org/10.1186/s12862-022-02018-5
  • Baird E., Yilmaz A. Insect dorsal ocelli: a brief overview. In: Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes (Buschbeck E., Bok M. eds). Cham Springer. 2023. P. 205–221. https://doi.org/10.1007/978-3-031-23216-9_8
  • Belušič G., Šporar K., Meglič A. Extreme polarization sensitivity in the retina of the corn borer moth Ostrinia. Journal of Experimental Biology. 2017. V. 220(11). P. 2047–2056. https://doi.org/10.1242/jeb.153718
  • Berry R., Stange G., Olberg R., van Kleef J. The mapping of visual space by identified large second-order neurons in the dragonfly median ocellus. Journal of Comparative Physiology. A. 2006. V. 192. P. 1105–1123. https://doi.org/10.1007/s00359-006-0142-5
  • Berry R.P., Warrant E.J., Stange G. Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the locust ocelli. Vision Research. 2007. V. 47(10). P. 1382–1393. https://doi.org/10.1016/j.visres.2007.01.020
  • Berry R.P., Wcislo W.T., Warrant E.J. Ocellar adaptations for dim light vision in a nocturnal bee. Journal of Experimental Biology. 2011. V. 214(8). P. 1283–1293. https://doi.org/10.1242/jeb.050427
  • Biswas J. Kotumsar Cave biodiversity: a review of cavernicoles and their troglobiotic traits. Biodiversity and conservation. 2010. V. 19(1). P. 275–289. https://doi.org/10.1007/s10531-009-9710-7
  • Bitsch C.O., Bitsch J.A. Evolution of eye structure and arthropod phylogeny. In: Crustacea and arthropod relationships Ed. Koenemann S., Jenner R.A., Schram F.R. New York: CRC Press. 2005. P. 185–214.
  • Böhm A., Pass G. The ocelli of Archaeognatha (Hexapoda): functional morphology, pigment migration and chemical nature of the reflective tapetum. Journal of Experimental Biology. 2016. V. 219(19). P. 3039–3048. https://doi.org/10.1242/jeb.141275
  • Böhm A., Meusemann K., Misof B., Pass G. Hypothesis on monochromatic vision in scorpionflies questioned by new transcriptomic data. Scientific Reports. 2018. V. 8(1). P. 9872. https://doi.org/10.1038/s41598-018-28098-2
  • Borja A.T., Cruz-Quintana S., Velastegui G., Vasquez C.L. Prevalence of Melophagusovinus (Diptera, Hippoboscidae) in sheep in the province of Tungurahua, Ecuador. Iranian Journal of Veterinary Science and Technology. 2022. V. 14(3). P. 29–37. https://doi.org/10.22067/ijvst.2022.76650.1147
  • Briscoe A.D., Chittka L. The evolution of color vision in insects. Annual review of entomology. 2001. V. 46(1). P. 471–510. https://doi.org/10.1007/s00441-004-0994-3
  • Buschbeck E.K. Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae. Journal of Experimental Biology. 2014. V. 217(16). P. 2818–2824. https://doi.org/10.1242/jeb.085365
  • Clapham M.E., Karr J.A. Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences. 2012. V. 109(27). P. 10927–10930. https://doi.org/10.1073/pnas.1204026109
  • Chen Q., Li T., Hua B. Ultrastructure of the larval eye of the scorpionfly Panorpadubia (Mecoptera: Panorpidae) with implications for the evolutionary origin of holometabolous larvae. Journal of Morphology. 2012. V. 273(6). P. 561–571. https://doi.org/10.1002/jmor.20001
  • Cooter R.J. Ocellus and ocellar nerves of Periplaneta americana L. (Orthoptera: Dictyoptera). International Journal of Insect Morphology and Embryology. 1975. V. 4(3). P. 273–288. https://doi.org/10.1016/0020-7322(75)90036-7
  • Donovan S.E., Jones D.T., Sands W.A., Eggleton P. Morphological phylogenetics of termites (Isoptera). Biological Journal of the Linnean Society. 2000. V. 70(3). P. 467–513. https://doi.org/10.1111/j.1095-8312.2000.tb01235.x
  • Dow M.A., Eaton J.L. Fine structure of the ocellus of the cabbage looper moth (Trichoplusia ni). Cell and Tissue Research. 1976. V. 171. P. 523–533. https://doi.org/10.1007/BF00220243
  • Du X.L., Yue C., Hua B.Z. Embryonic development of the scorpionfly Panorpaemarginata Cheng with special reference to external morphology (Mecoptera: Panorpidae). Journal of Morphology. 2009. V. 270. P. 984–995. https://doi.org/10.1002/jmor.10736
  • Duan D., Wang Y., Cheng T. Morphological and molecular identification of Melophagusovinus. ActaVeterinaria et Zootechnica Sinica. 2017. V. 48(11). P. 2181–2188.
  • Eggleton P. An introduction to termites: biology, taxonomy and functional morphology. In: Biology of Termites: a Modern Synthesis (Bignell D., Roisin Y., Lo N. eds). Dordrecht: Springer. 2010. P. 1–26.https://doi.org/10.1007/978-90-481-3977-4_1
  • Fent K., Wehner R. Ocelli: a celestial compass in the desert ant Cataglyphis. Science. 1985. V. 228. P. 192–194. https://doi.org/10.1126/science.228.4696.192
  • Friedman O., Böhm A., Rechav K., Pinkas I., Brumfeld V., Pass G., Weiner S., Addadi L. Structural organization of xanthine crystals in the median ocellus of a member of the ancestral insect group Archaeognatha. Journal of structural biology. 2022. V. 214(1). Article 107834. https://doi.org/10.1016/j.jsb.2022.107834
  • Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod structure & development. 2006. V. 35(4). P. 357–378. https://doi.org/10.1016/j. asd.2006.08.010
  • Garcia J.E., Hung Y.S., Greentree A.D., Rosa M.G., Endler J.A., Dyer A.G. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. Proceedings of the National Academy of Sciences. 2017. V. 114(29). P. 7713–7718. https://doi.org/10.1073/pnas.1703454114
  • Geiser F.X., Labhart T. Electrophysiological investigation on the ocellar retina of the honeybee (Apis mellifera). Verhandlungen der Deutschen Zoologischen. 1982. V. 75. P. 307.
  • Goldsmith T.H., Ruck P.R. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees: an electrophysiological study. The Journal of General Physiology. 1958. V. 41(6). P. 1171. https://doi.org/10.1085/jgp.41.6.1171
  • Goodman L.J. The structure and function of the insect dorsal ocellus. Advances in insect physiology. 1970. V. 7. P. 97–195. https://doi.org/10.1016/S0065-2806(08)60241-6
  • Goodman L.J. Organization and physiology of the insect dorsal ocellar system. In: Handbook of sensory physiology (Autrum H. ed.). Berlin. Springer. 1981. V. VII/6C.
  • Goto S.G. Photoperiodic time measurement, photoreception, and circadian clocks in insect photoperiodism. Applied Entomology and Zoology. 2022. V. 57(3). P. 193–212. https://doi.org/10.1007/s13355-022-00785-7
  • Gremillio G., Humbert J.S., Krapp H.G. Bio-inspired modeling and implementation of the ocelli visual system of flying insects. Biological cybernetics. 2014. V. 108. P. 735–746. https://doi.org/10.1007/s00422-014-0610-x
  • Guignard Q., Spaethe J., Slippers B., Strube-Bloss M., Allison J.D. Evidence for UV-green dichromacy in the basal hymenopteran Sirexnoctilio (Siricidae). Scientific Reports. 2021. V. 11(1). Article 15601. https://doi.org/10.1038/s41598-021-95107-2
  • Guy R.G., Goodman L.J., Mobbs P.G. Visual interneurons in the bee brain: synaptic organization and transmission by graded potentials. Journal of Comparative physiology.1979. V. 134. P. 253–264. https://doi.org/10.1002/neu.480200602
  • Hamdorf K., Hochstrate P., Hoglund G., Moser M., Sperber S., Schlecht P. Ultra-violet sensitizing pigment in blowfly photoreceptors r1–6 – probable nature and binding sites. Journal of Comparative physiology A.1992. V. 171. P. 601–615. https://doi.org/10.1007/BF00194108
  • Harley C.M., English B.A., Ritzmann R.E. Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis. Journal of Experimental Biology. 2009. V. 212(10). P. 1463–1476. https://doi.org/10.1242/jeb.028381
  • Hartenstein V., Reh T.A. Homologies between vertebr ate a nd i nver tebr ate eye s . D r o s ophila eye development. 2002. P. 219–255. https://doi.org/10.1007/978-3-540-45398-7_14
  • Harzsch S. Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phyologeny. Integrative and Comparative Biology. 2006. V. 46(2) P.162–194. https://doi.org/10.1093/icb/icj011
  • Heads S.W. The first fossil spider cricket (Orthoptera: Gryllidae: Phalangopsinae): 20 million years of troglobiomorphosis or exaptation in the dark? Zoological Journal of the Linnean Society. 2010. V. 158. P. 56–65. https://doi.org/10.1111/j.1096-3642.2009.00587.x
  • Henze M.J., Dannenhauer K., Kohler M., Labhart T., Gesemann M. Opsin evolution and expression in Arthropod compound eyes and ocelli: Insights from the cricket Gryllus bimaculatus. BMC evolutionary biology.2012. V. 12. P. 163. https://doi.org/10.1186/1471-2148-12-163
  • Henze M.J., Oakley T.H. The dynamic evolutionary history of Pancrustacean eyes and opsins. Integrative and Comparative Biology. 2015.V. 55(5). P. 830–842. https://doi.org/10.1093/icb/icv100
  • Honegger H. W, Campan R. Vision and visually guided behavior. In: Cricket behavior and neurobiology (Huber F eds.). Ithaca London. Cornell University Press. 1989. P. 147–177.
  • Hung Y.S., Ibbotson M.R. Ocellar structure and neural innervation in the honeybee. Front Neuroanatomy. 2014. V. 8. P. 6. https://doi.org/10.3389/fnana.2014.00006
  • Insausti T.C., Lazzari C.R. An ocellar “pupil” that does not change with light intensity, but with the insect age in Triatoma infestans. Memórias do Instituto Oswaldo Cruz. 2000. V. 95. P. 743–746. https://doi.org/10.1590/S0074-02762000000500024
  • Insausti, T.C., Lazzari, C.R. The postembryonic development of the ocellar system of Triatoma infestans Klug (Heteroptera: Reduviidae). Memórias do Instituto Oswaldo Cruz. 2000. V. 95. P. 877–881. https://doi.org/10.1590/S0074-02762000000500024
  • Jean-Guillaume C.B., Kumar J.P. Development of the ocellar visual system in Drosophila melanogaster. The FEBS journal. 2022. V. 289(23). P. 7411–7427. https://doi.org/10.1111/febs.16468
  • Kastberger G. The ocelli control the flight course in honeybees. Physiological Entomology. 1990. V. 15(3). P. 337–346. https://doi.org/10.1111/j.1365-3032.1990.tb00521.x
  • Kelber A., Jonsson F., Wallén R., Warrant E., Kornfeldt T., Baird E. Hornets can fly at night without obvious adaptations of eyes and ocelli. PLOS ONE. 2011. V. 6. P. e21892. https://doi.org/10.1371/journal.pone.0021892
  • Kevan P.G., Chittka L., Dyer A.G. Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology. 2001. V. 204(14). P. 2571–2580. https://doi.org/10.1242/jeb.204.14.2571
  • Kirschfeld K., Feiler R., Vogt K. Evidence for a sensitizing pigment in the ocellar photoreceptors of the fly (Musca, Calliphora). Journal of Comparative physiology A. 1988. V. 163. P. 421–423. https://doi.org/10.1007/BF00604896.
  • Koenemann S., Jenner R. Crustacea and arthropod relationships. New York. CRC Press. 2005.
  • Labhart T. Can invertebrates see the e-vector of polarization as a separate modality of light? Journal of Experimental Biology. 2016. V. 219(24). P. 3844–3856. https://doi.org/10.1242/jeb.139899
  • Land M.F., Nilsson D.E. Animal eyes. Oxford. Oxford University Press. 2012. P. 271. https://doi.org/10.1093/acprof:oso/9780199581139.001.0001
  • Lazzari C.R., Reiseman C.E., Insausti T.C. The role of the ocelli in the phototactic behaviour of the haematophagous bug Triatoma infestans. Journal of insect physiology. 1998. V. 44(12). P. 1159–1162. https://doi.org/10.1016/S0022-1910(98)00080-8
  • Lazzari, C.R., Fischbein D., Insausti T.C. Differential control of light-dark adaptation in the ocelli and compound eyes of Triatoma infestans. Journal of insect physiology. 2011. V. 57(11). P. 1545–1552. https://doi.org/10.1016/j. jinsphys.2011.08.005
  • Lee M., Hwang J., Lin J., Tung L. Characteristics of GABA receptors on the ocellar L-neurons of American cockroach Periplaneta americana. Chinese Journal of Physiology. 2007. V. 50(4). P. 178.
  • Leschen R.A.B., Beutel R.G. Ocellar atavism in Coleoptera: Plesiomorphy or apomorphy? Journal of Zoological Systematics and Evolutionary Research. 2004. V. 42. P. 63–69. https://doi.org/10.1046/j.0947-5745.2003.00241.x
  • Lindauer M., Schricker B. Über die Funktion der Ocellen bei den Dämmerungsflügen der Honigbiene. Biol. Zeitblatt. 1963. V. 82. P. 721–725.
  • Loesel R., Homberg U. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. Journal of Comparative Neurology. 2001. V. 439(2). P. 193–207. https://doi.org/10.1002/cne.1342
  • Ma N., Chen H., Hua B. Larval morphology of the scorpionfly Dicerapanorpa magna (Chou) (Mecoptera: Panorpidae) and its adaptive significance. ZoologischerAnzeiger-A. Journal of Comparative Zoology.2014. V. 253(3). P. 216–224. https://doi.org/10.1016/j.jcz.2013.10.002
  • Ma W.R., Chen Q.X., Bai J.L., Hua B.Z. Ultrastructure of the dorsal ocellus of Bittacus planus larvae (Mecoptera: Bittacidae) with evolutionary significance. Arthropod Structure & Development. 2023. V. 72, P. 101234. https://doi.org/10.1016/j.asd.2023.101234
  • Mizunami M., Tateda H. Classification of ocellar interneurones in the cockroach brain. Journal of Experimental Biology.1986. V. 125(1). P. 57–70. https://doi.org/10.1242/jeb.125.1.57
  • Mizunami M. Information processing in the insect ocellar system: comparative approaches to the evolution of visual processing and neural circuits. In: Advances in insect physiology (Evans P.D., ed.). Academic Press. Cambridge. 1994. V. 25. P. 151–265. https://doi.org/10.1016/S0065-2806(08)60065-X
  • Mizunami M. F u nction a l d iver sit y of neural organization in insect ocellar systems. Vision Research. 1995. V. 35. P. 443–452. https://doi.org/10.1016/0042-6989(94)00192-O
  • Mote M.I., Wehner R. Functional characteristics of photoreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. Journal of Comparative physiology. 1980. V. 137. P. 63–71. https://doi.org/10.1007/BF00656918
  • Narendra A., Ramirez-Esquivel F., Ribi W.A. Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus. Scientific reports. 2016. V. 6(1). Article 22331. https://doi.org/10.1038/srep22331
  • Narendra A., Ribi W.A. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. Journal of Experimental Biology. 2017. V. 220(23). P. 4383–4390. https://doi.org/10.1242/jeb.159392
  • Nishiitsutsuji-Uwo J., Pittendrigh C.S. Central nervous system control of circadian rhythmicity in the cockroach: III. The optic lobes, locus of the driving oscillation? Zeitschrift für vergleichende Physiologie. 1968. V. 58. P. 14–46. https://doi.org/10.1007/BF00302434
  • Niven J.E., Laughlin S.B. Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology. 2008. V. 211(11). P. 1792–1804. https://doi.org/10.1242/jeb.017574
  • Ogawa Y., Ribi W., Zeil J., Hemmi J.M. Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. Journal of Experimental Biology. 2017. V. 220(9). P. 1701–1708. https://doi.org/10.1242/jeb.156109
  • Ohyama T., Toh Y. Multimodality of ocellar interneurones of the American сockroach. Journal of Experimental Biology. 1986. V. 125(1). P. 405–409. https://doi.org/10.1242/jeb.125.1.405
  • Okada J., Toh Y. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zoological science. 1998. V. 15(6). P. 831–835. https://doi.org/10.2108/zsj.15.831
  • Page T.L., Caldarola P.C., Pittendrigh C.S. Mutual entrainment of bilaterally distributed circadian pacemaker. Proceedings of the National Academy of Sciences. 1977. V. 74(3). P. 1277–1281. https://doi.org/10.1073/pnas.74.3.1277
  • Page T.L. Transplantation of the cockroach circadian pacemaker. Science. 1982. V. 216. P. 73–75. https://doi.org/10.1126/science.216.4541.73
  • Page T.L., Barrett R.K. Effects of light on circadian pacemaker development: II. Responses to light. Journal of Comparative Physiology A. 1989. V. 165. P. 51–59. https://doi.org/10.1007/BF00613799
  • Pappas L.G., Eaton J.L. The internal ocellus of Manduca sexta: electroretinogram and spectral sensitivity. Journal of Insect Physiology. 1977. V. 23(11-12). P. 1355–1358. https://doi.org/10.1016/0022-1910(77)90157-3
  • Parsons M.M., Krapp H.G., Laughlin S.B. A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli. Journal of Experimental Biology. 2006. V. 209(22). P. 4464–4474. https://doi.org/10.1242/jeb.02560
  • Peeters C., Ito F., Wiwatwitaya D., Keller R.A., Hashim R., Molet M. Striking polymorphism among infertile helpers in the arboreal ant Gesomyrmex. Asian Myrmecol. 2017. V. 9. P. 1–15. https://doi.org/10.20362/am.009015
  • Peitsch D., Fietz A., Hertel H., de Souza J., Ventura D.F., Menzel R. The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A. 1992. V. 170. P. 23–40. https://doi.org/10.1007/BF00190398
  • Penmetcha B., Ogawa Y., Ribi W.A., Narendra A. Ocellar structure of African and Australian desert ants. Journal of Comparative Physiology A. 2019. V. 205. P. 699–706. https://doi.org/10.1007/s00359-019-01357-x
  • Poidatz J., Monceau K., Bonnard O., Thiéry D. Activity rhythm and action range of workers of the invasive hornet predator of honeybees Vespa velutina, measured by radio frequency identification tags. Ecology and Evolution. 2018. V. 8. P. 7588–7598. https://doi.org/10.1002/ece3.4182
  • Porter M.L., Cronin T.W., Dick C.W., Simon N., Dittmar K. Visual system characterization of the obligate bat ectoparasite Trichobius frequens (Diptera: Streblidae). Arthropod structure & development. 2021.V. 60. Article 101007. https://doi.org/10.1016/j.asd.2020.101007
  • Rampini M., Di Russo C., Cobolli M. The Aemodogryllinae cave crickets from Guizhou, Southern China (Orthoptera, Rhaphidophoridae). Monografie naturalistiche. 2008. V. 3. P. 129–141.
  • Reischig T., Stengl M. Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). Journal of Experimental Biology. 2003. V. 206(11). P. 1877–1886. https://doi.org/10.1242/jeb.00373
  • Rence B.G., Lisy M.T., Garves B.R., Quinlan B.J. The role of ocelli in circadian singing rhythms of crickets. Physiological entomology. 1988. V. 13(2). P. 201–212. https://doi.org/10.1111/j.1365-3032.1988.tb00924.x
  • Renner M., Heinzeller T. Do trained honeybees with reliably blinded ocelli really return to the feeding site? Journal of Apicultural Research. 1979. V. 18(3). P. 225–229. https://doi.org/10.1080/00218839.1979.11099974
  • Ribi W., Warrant E.J., Zeil J. The organization of honeybee ocelli: regional specializations and rhabdom arrangements. Arthropod structure & development. 2011. V. 40. P. 509–520. https://doi.org/10.1016/j.asd.2011.06.004
  • Ribi W., Zeil J. Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. Journal of Comparative Physiology A. 2018. V. 204(5). P. 505–517. https://doi.org/10.1007/s00359-018-1258-0
  • Rieger D, Stanewsky R, Helfrich-Forster C. Cryptochrome, compound eyes, H-B eyelets and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. Journal of biological rhythms. 2003. V. 18. P. 377–391. https://doi.org/10.1177/0748730403256
  • Rivault C. The role of the eyes and ocelli in the initiation of circadian activity rhythms in cockroaches. Physiological Entomology. 1976. V. 1(4). P. 277–286. https://doi.org/10.1111/j.1365-3032.1976.tb00977.x
  • Roberts S.K. Circadian rhythms in cockroaches: effects of optic lobe lesions. Journal of Comparative Physiology. 1974. V. 88(1). P. 21–30. https://doi.org/10.1007/BF00695920
  • Robinson G.S. A phylogeny for the Tineoidea (Lepidoptera). Insect Systematics & Evolution. 1988. V. 19(2). P. 117–129. https://doi.org/10.1163/187631289x00113
  • Saunders D.S. Insect circadian rhythms and photoperiodism. Invertebrate Neuroscience. 1997. V. 3. P. 155–164. https://doi.org/10.1007/BF02480370
  • Saunders D.S. Insect photoperiodism: seeing the light. Physiological Entomology. 2012. V. 37(3). P. 207–218. https://doi.org/10.1111/j.1365-3032.2012.00837.x
  • Schwarz S., Albert L., Wystrach A., Cheng K. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology. 2011. V. 214(6). P. 901–906. https://doi.org/10.1242/jeb.049262
  • Sendi H., Vršanský P., Podstrelena L., Hinkelman J., Kúdelová T., Kúdela M., Vidlička Ľ., Ren X., Quicke D.L. Nocticolid cockroaches are the only known dinosaur age cave survivors. Gondwana Research. 2020. V. 82. P. 288–298. https://doi.org/10.1016/j. gr.2020.01.002
  • Severina I.Y., Isavnina I.L., Knyazev A.N. Topographic anatomy of ascending and descending neurons of the supraesophageal, meso-and metathoracic ganglia in paleo-and neopterous insects. Journal of Evolutionary Biochemistry and Physiology. 2016. V. 52. P. 397-406. https://doi.org/10.1134/S0022093016050082
  • Simmons P.J. The transfer of signals from photoreceptor cells to large 2nd order neurons in the ocellar visual-system of the locust Locusta migratoria. Journal of Experimental Biology.1995. V. 198. P. 537–549. https://doi.org/10.1242/jeb.198.2.537
  • Simmons P.J., Hardie R.C. Evidence that histamine is a neurotransmitter of photoreceptors in the locust ocellus. Journal of Experimental Biology. 1988. V. 138(1). P. 205–219. https://doi.org/10.1242/jeb.138.1.205
  • Simmons P.J. Signal processing in a simple visual system: the locust ocellar system and its synapses. Microscopy research and technique. 2002. V. 56(4). P. 270–280. https://doi.org/10.1002/jemt.10030
  • Somanathan H., Kelber A., Borges R.M., Wallén R., Warrant E.J. Visual ecology of Indian carpenter bees II: adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A. 2009. V. 195. P. 571–583. https://doi.org/10.1007/s00359-009-0432-9
  • Stange G., Howard J. An ocellar dorsal light response in a dragonfly. Journal of Experimental Biology. 1979. V. 83(1). P. 351–355. https://doi.org/10.1242/jeb.83.1.351
  • Stange G., Stowe S., Chahl J., Massaro A. Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. Journal of Comparative Physiology A. 2002. V. 188. P. 455–467. https://doi.org/10.1007/s00359-002-0317-7
  • Stavenga D.G., Bernard G.D., Chappell R.L., Wilson M. Insect pupil mechanisms: III. On the pigment migration in dragonfly ocelli. Journal of Comparative Physiology A. 1979. V. 129(3). P. 199–205. https://doi.org/10.1007/BF00657654
  • Strausfeld N.J., Ma X., Edgecombe G.D., Fortey R.A., Land M.F., Liu Y., Cong P., Hou X. Arthropod eyes: the early Cambrian fossil record and divergent evolution of visual systems. Arthropod Structure & Development. 2016. V. 45(2). P. 152–172. https://doi.org/10.1016/j. asd.2015.07.005
  • Stuart A.E., Borycz J., Meinertzhagen I.A. The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Progress in neurobiology. 2007. V. 82(4). P. 202–227. https://doi.org/10.1016/j. pneurobio.2007.03.006
  • Taylor F. Ecology and evolution of physiological time in insects. The American Naturalist. 1981. V. 117(1). P. 1–23. https://doi.org/10.1086/283683
  • Taylor G.K., Krapp H.G. Sensory systems and flight stability: what do insects measure and why? Advances in insect physiology. 2007. V. 34. P. 231–316. https://doi.org/10.1016/S0065-2806(07)34005-8
  • Taylor G.J., Ribi W., Bech M., Bodey A.J., Rau C., Steuwer A., Warrant E.J., Baird E. The dual function of oprchid bee ocelli as revealed by x-ray microtomography. Current Biology. 2016. V. 26. P. 1319–1324. http://dx.doi.org/10.1016/j.cub.2016.03.038
  • Van Kleef J., Berry R., Stange G. Directional selectivity in the simple eye of an insect. Journal of Neuroscience. 2008. V. 28(11). P. 2845–2855. https://doi.org/10.1523/JNEUROSCI.5556-07.2008
  • Van der Kooi C.J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annual review of entomology. 2021. V. 66. P. 435–461. https://doi.org/10.1146/annurev-ento-061720-071644
  • Velarde R.A., Sauer C.D., Walden K.K., Fahrbach S.E., Robertson H.M. Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect biochemistry and molecular biology. 2005. V. 35(12). P. 1367–1377. https://doi.org/10.1016/j.ibmb.2005.09.001
  • Warrant E., Nilsson D.E. Invertebrate vision. Cambridge University Press. 2006.
  • Wilby D., Aarts T., Tichit P., Bodey A., Rau C., Taylor G., Baird E. Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli. Vision Research. 2019. V. 158. P. 100–108. https://doi.org/10.1016/j. visres.2019.02.008
  • Wilson M. Autonomous pigment movement in the radial pupil of locust ocelli. Nature. 1975. V. 258. P. 603–604. https://doi.org/10.1038/258603a0
  • Wilson M. The functional organization of locust ocelli. Journal of Comparative Physiology. 1978. V. 124. P. 297–316. https://doi.org/10.1007/BF00661380
  • Xu P., Lu B., Chao J., Holdbrook R., Liang G., Lu Y. The evolution of opsin genes in five species of mirid bugs: duplication of long-wavelength opsins and loss of blue-sensitive opsins. BMC Ecology and Evolution. 2021. V. 21(1). P. 66. https://doi.org/10.1186/s12862-021-01799-5
  • Yukizane M., Tomioka K. Neural pathways involved in mutual interactions between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A. 1995. V. 176. P. 601–610. https://doi.org/10.1007/BF01021580
  • Zeil J., Ribi W., Narendra A. Polarization vision in ants, bees and wasps. In: Polarized light and polarization vision in animal sciences (Horváth G. ed). Heidelberg. Springer. 2014. V. 2. https://doi.org/10.1007/978-3-642-54718-8_3
  • Zhang Q., Zhou Q., Han S., Li Y., Wang Y., He H. The genome of sheep ked (Melophagus ovinus) reveals potential mechanisms underlying reproduction and narrower ecological niches. BMC genomics. 2023. V. 24(1). P. 1–11. https://doi.org/10.1186/s12864-023-09155-1
  • Zhukov V.V., Bobkova M.B., Vakolyuk I.A. Eye structure and vision in the freshwater pulmonate mollusk Planorbarius corneus. Journal of Evolutionary Biochemistry and Physiology. 2002. V. 38. P. 419–430. https://doi.org/10.1023/A:1021101919847