The article is a review of literature related to anatomy and function of the central visual pathways from the optic
nerves, chiasm, optic tracts, lateral genicular body to the higher cortical centers. The focus is on the presenting
clinical syndromes and subsequent lesion localization. In this review the evidence for retrograde trans-synaptic
degeneration following acquired post-geniculate human visual pathway damage are discussed and proved by optical
coherence tomography data. It has been shown that knowledge of the anatomy and functions of the central parts of the
visual system allows to determine both the topic of the pathological process in the brain, and to evaluate the results
of surgical and radiation treatment.
Key words:
visual system, defeat, syndrome
DOI: 10.31857/S0235009224020027
EDN: CUXUJA
Cite:
Serova N. K.
Klinicheskaya fiziologiya tsentralnykh otdelov zritelnoi sistemy
[Clinical physiology of the central parts of the visual system].
Sensornye sistemy [Sensory systems].
2024.
V. 38(2).
P. 28–34 (in Russian). doi: 10.31857/S0235009224020027
References:
- Vit V.V. Stroenie zritel'noi sistemy cheloveka [Structure of the human visual system]. Odessa: Astroprint, 2003. 655 p
- Eliseeva N.M. Spektralinay opticheskay kogerentnay tomografiy pri porazenii razlichnuch uchastkov zritelinogo puti [Spectral optical coherence tomography in lesions of various parts of the visual pathway]. Materialy XX nauchno-prakticheskoj nejrooftal’mologicheskoj konferencii. Moscow. 2020. P. 9–11 (in Russia).
- Eliseeva N.M., Pitskhelauri D.I., Serova N.K. Naruschenie poly zreniy posle operachii po povodu visochnoi epilepsii, obuslovlennoi sklerozom gippokampa. [Disturbance of the visual field after surgery for temporal lobe epilepsy due to hippocampal sclerosis]. Voprosy Neirokhirurgii [Neurosurgery issues]. 2019. V. 83(5). P. 14–20 (in Russia).
- Eliseeva N.M., Serova N.K., Erichev V.P., Panyushkina L.A. Strukturnue izmeneniy setchatki i zritelynogo nerva pri porazenii centralynogo nevrona zritelinogo puti [Structural changes in the retina and optic nerve in lesions of the central neuron of the optic pathway]. Vestnik ophthalmologii [Bulletin of Ophthalmology]. 2017. V. 133(4). P. 25–30 (in Russia).
- Eliseeva N.M., Serova N.K., Pitskhelauri D.I. Retrograde degeneration of the optic pathway. Voprosy Neirokhirurgii. 2021. V. 85(6). P. 92–96 (in Russia).
- Kushel' Yu.V. Safronova E.I., Demin M.O. Aktual'nost' keyhole-dostupov v khirurgii gigantskikh opukholei osnovaniya golovnogo mozga. Teoreticheskoe obosnovanie na primere chrezbrovnogo supraorbital'nogo dostupa [Relevance of keyhole accesses in the surgery of giant brain base tumors. Theoretical substantiation on the example of the transabdominal supraorbital access]. Voprosy neirokhirurgii. 2022. V. 86(5). P. 46–55.
- Maryashev S.A., Ogurtsova A.A., Dombaanai B.S. et al. Intraoperatsionnaya registratsiya korkovykh zritel'nykh vyzvannykh potetsialov pri udalenii gliomy zatylochnoi doli. Klinicheskoe nablyudenie i obzor literatury [Intraoperative recording of cortical visual evoked potentials during removal of occipital lobe glioma. Clinical observation and literature review]. Voprosy neirokhirurgii. 2020. V. 84(6). P. 93–99.
- Mosin I.M., Neudakhina E.A., Slavinskaya N.V. Gomonimnaya gemianopicheskaya gipoplaziya zritel'nogo nerva u detei [Homonymous hemianopic optic nerve hypoplasia in children]. Proceedings of the IX Scientific and Practical Neuro-ophthalmologic Conference. Moscow, 2007. P. 54–65.
- Serova N.K. Sindromy porazheniya zritel'nogo analizatora: neirokhirurgicheskie aspekty. Klinicheskaya neirooftal'mologiya [Lesion syndromes of the visual analyzer: neurosurgical aspects]. Ed. N.K. Serova. Tver', 2011. 343 p.
- Hubel D. Eye, brain and vision. Moscow: MIR, 1990. 239 p. (in Russia).
- Bajandas F.J., McBeath J.B., Smith J.L. Congenital homonymous hemianopia. Am. J. Ophthalmol. 1976. V. 82. № 3. P. 498–500. https://doi.org/10.1016/0002-9394(76)90502-x
- Ebeling U., Reulen H. Neurosurgical topography of the optic radiation in the tempo-ral lobe. Acta Neurochir. 1988. V. 92. № 1-4. P. 29–36. https://doi.org/10.1007/BF01401969
- Gutzwiller E., Cabrilo I., Radovanovich I. Intraoperative monitoring with visual evoked potentials for brain surgeries. J. Neurosurg. 2018. V. 130. № 2. P. 654–660. https://doi.org/10.3171/2017.8.JNS171168
- Horton J.C., Hoyt W.F. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991. V. 109. № 6. P. 816–824. https://doi.org/10.1001/archopht.1991.01080060080030
- Hoyt W., Rios-Montenegro E., Behrens M. Homonymous hemioptic hypoplasia: Fundoscopic features in standard and red-free illumination in three patients with congenital hemiplegia. Br. J. Ophthalmol. 1972. V. 56. № 7. P. 537–545. https://doi.org/10.1136/bjo.56.7.537
- Jindahra P., Petrie A., Plant G. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012. V. 135. № 2. P. 534–541. https://doi.org/10.1093/brain/awr324
- Jindahra P., Petrie A., Plant G. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain. 2009. V. 132. № 3. P. 628–634. https://doi.org/10.1093/brain/awp001
- Kamada K., Todo T., Morita A. Functional monitoring for visual pathway using real-time visual evoked potentials and optic-radiation tractography. Neurosurgery. 2005. V. 57. № 1. P. 121–127. https://doi.org/10.1227/01. neu.0000163526.60240.b6
- Keller J., Sánchez-Dalmau B.F., Villoslada P. Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS One. 2014. V. 9. № 5. P. e97444. https://doi.org/10.1371/journal.pone.0097444
- Kline L.B. Anatomy and physiology of the optic tracts and lateral geniculate nucleus. In: Walsh & Hoyt Neuroophthalmology. Eds 5 by N. Miller, N. Newman. The Williams&Wilkins Baltimore. 1998. V. 1. № 5. P. 101–120.
- Livingston C.A., Mustari M.J. The anatomical organization of the macaque pregeniculate complex. Brain Res. 2000. V. 876. № 1-2. P. 166–179. https://doi.org/10.1016/s0006-8993(00)02647-0
- McFadzean R., Brosnahan D., Hadley D., Mutlukan E. Representation of the visual field in the occipital striate cortex. Br. J. Ophthalmol. 1994. V. 78. № 3. P. 185–190. https://doi.org/10.1136/bjo.78.3.185
- Meier P.G., Maeder P., Kardon R.H., Borruat F. Homonymous ganglion cell layer thinning after isolated occipital lesion: macular OCT demonstrates transsynaptic retrograde retinal degeneration. J. Neuro-Ophthalmol. 2015. V. 35. № 2. P. 112–116. https://doi.org/10.1097/WNO.0000000000000182
- Murray M.M., Thelen A., Thut G. The multisensory function of the human primary visual cortex. Neuropsychologia. 2016. V. 83. P. 161–169. https://doi.org/10.1016/j. neuropsychologia.2015.08.011
- Ota T., Kawai K., Kamada J. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J. Neurosurg. 2010. V. 112. № 2. P. 285–294. https://doi.org/10.3171/2009.6.JNS081272
- Pasupathy A., Connor C.E. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophys Sci. 2001. V. 86. № 5. P. 2505–2519. https://doi.org/10.1152/jn.2001.86.5.2505
- Rizzo J.F. Embryology, Anatomy, and Physiology of the Afferent Visual Pathway. In: Walsh & Hoyt’s Clinical Neuro-Ophthalmology. 6th ed. by N. Miller, N. Newman. Lippincott Williams & Wilkins Copyright. 2005. V.I. Sec. I. P. 4–82.
- Tong F. Primary visual cortex and visual awareness. Nat Rev Neurosci. 2003. V. 4. № 3. P. 219–229. https://doi.org/10.1038/nrn1055
- Wall M. Optic radiations and occipital cortex. In: Walsh & Hoyt Neuroophthalmolog. Ed. 5 by N. Miller, N. Newman. Williams & Wilkins Baltimore.1998. V. 1. № 6. P. 121–151.
- Zhaoping Li. A new framework for understanding vision from the perspective of the primary visual cortex. Curr Opin Neurobiol. 2019. V. 58. P. 1–10. https://doi.org/10.1016/j. conb.2019.06.001