• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Problems and prospects of new methods of light stimulation in visual rehabilitation

© 2023 M. V. Zueva, V. I. Kotelin, N. V. Neroeva, D. V. Fadeev, O. M. Manko

Helmholtz Medical Research Center of Eye Diseases 105062 Moscow, St. Sadovaya-Chernogryazskaya 14/19, Russia
Institute of Biomedical Problems RAS 123007 Moscow, Khoroshevskoe sh., 76A, Russia

Received 27 Dec 2022

Neurodegenerative retinal diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy remain the leading causes of low vision and blindness worldwide. Visual rehabilitation of patients who are visually impaired due to neurodegenerative diseases of the retina requires solving problems associated with a violation of the structure of neural networks and a deficiency of visual functions provided by these networks. Despite certain successes in the application of innovative methods of therapy, it is important to develop new approaches to visual rehabilitation to improve the quality of life of visually impaired patients. In visual rehabilitation, not only medical, but also various non-pharmacological therapy strategies are widely used to protect and restore the structure of the retina and its function. Among them, a separate niche is occupied by the technologies of vision stimulation therapy (phototherapy), the analysis of the main aspects of which is the task of this review. The vector of new research in the field of phototherapy is aimed at developing methods that can maximize the plasticity of the visual system to increase the effectiveness of its protection and recovery in neurodegenerative pathology. In this regard, new technologies of fractal phototherapy have great potential in visual rehabilitation.

Key words: neurodegenerative diseases, age-related retina diseases, low vision, visual rehabilitation, neuroplasticity, phototherapy, photobiomodulation, biorhythms, fractal dynamics

DOI: 10.31857/S0235009223020075  EDN: QTGBIU

Cite: Zueva M. V., Kotelin V. I., Neroeva N. V., Fadeev D. V., Manko O. M. Problemy i perspektivy novykh metodov svetovoi stimulyatsii v zritelnoi reabilitatsii [Problems and prospects of new methods of light stimulation in visual rehabilitation]. Sensornye sistemy [Sensory systems]. 2023. V. 37(2). P. 93–118 (in Russian). doi: 10.31857/S0235009223020075

References:

  • Anishchenko V.S. Dinamicheskie sistemy [Dynamic systems]. Sorosovskij obrazovatel’nyj zhurnal [Soros Educational Journal]. 1997. (11). P. 77. (In Russian) Available at http://www.pereplet.ru/nauka/Soros/pdf/9711_077.pdf
  • Balashova A.N., Dityaev A.E., Mukhina I.V. Formy i mekhanizmy gomeostaticheskoj sinapticheskoj plastichnosti. [Forms and Mechanisms of Homeostatic Synaptic Plasticity]. Sovremennye tekhnologii v medicine [Modern Technologies in Medicine]. 2013. T. 5 (2). P. 98–107. (in Russian).
  • Zaguskin S.L. Metody i ustroystva khronodiagnostiki i bioupravlyayemoy khronofizioterapii [Methods and devices for chronodiagnostics and biocontrolled chronophysiotherapy]. Sovremennyye voprosy biomeditsiny [Modern issues of biomedicine]. 2018. V. 2 (3). P. 71–78 (in Russian).
  • Zaguskin S.L. Ritmy kletki i zdorovye cheloveka. [Cell rhythms and human health] Khronobiologiya i khronomeditsina. [Chronobiology and chronomedicine]. Rostov n/D: publishing house of the Southern Federal University. 2010. 292 p. (in Russian).
  • Zueva M.V. Perspektivnost primeneniya nelineynoy stimulyatsionnoy terapii v lechenii travmaticheskikh povrezhdeniy golovnogo mozga i podderzhanii kognitivnykh funktsiy u pozhilykh lits [Prospects for the use of non-linear stimulation therapy in the treatment of traumatic brain injuries and maintaining cognitive functions in the elderly]. Obozreniye psikhiatrii i meditsinskoy psikhologii im. V.M. Bekhtereva [Review of Psychiatry and Medical Psychology. V.M. Bekhterev]. 2018. № 2. P. 36–43. https://doi.org/10.31363/2313-7053-2018-2-36-43 (in Russian).
  • Zueva M.V. Technologies of nonlinear stimulation: role in the treatment of diseases of the brain and the potential applications in healthy individuals. Human Physiology. 2018. V. 44. № 3. P. 289–299. https://doi.org/10.1134/S0362119718030180 (translated in English).
  • Zueva M.V., Karankevich A.I. Stimulyator slozhnostrukturirovannymi opticheskimi signalami i sposob yego ispol’zovaniya [Stimulator with complex-structured optical signals and method for operation thereof]. Patent RF No. 2680185. 2018 c.
  • Zueva M.V., Kovalevskaya M.A., Donkareva O.V., Karankevich A.I., Tsapenko I.V., Taranov A.A., Antonyan V.B. Fraktal’naya fototerapiya v neyroprotektsii glaukomy [Fractal phototherapy in the neuroprotection of glaucoma]. Oftalmologiya [Ophthalmology in Russia]. 2019. V. 16 (3). P. 317–328 (in Russian) https://doi.org/10.18008/1816-5095-2019-3-317-328
  • Zueva M.V., Kogoleva L.V., Katargina L.A. Plastichnost’ setchatki pri retinopatii nedonoshennykh i perspektivy fototerapii [Retinal plasticity in retinopathy of prematurity and prospects for phototherapy]. Rossiyskiy oftal’mologicheskiy zhurnal [Russian ophthalmological journal]. 2020. V. 13 (1). P. 77–84 (in Russian). https://doi.org/10.21516/2072-0076-2020-13-1-77-84
  • Zueva M.V., Rapoport S.I., Tsapenko I.V., Bubeev Yu.A., Manko O.M., Smoleevskiy A.E. Narusheniya fiziologicheskikh ritmov pri neyrodegenerativnykh zabolevaniyakh: problemy i perspektivy svetovoy terapii [Disorders of physiological rhythms in neurodegenerative diseases: problems and prospects of light therapy]. Klinicheskaya meditsina [Clinical medicine]. 2016. V. 94 (6). P. 427–432 (in Russian) https://doi.org/10.18821/0023-2149-2016-94-6-427-432
  • Zueva M.V., Spiridonov I.N., Semenova N.A., Rezvykh S.V. Generator fraktal’nykh mel’kaniy dlya biomeditsinskikh issledovaniy [Fractal flicker generator for biomedical research]. Patent RF No. 2014107497A. 2015.
  • Karu T.I., Afanaseva N.I. Tsitokhrom-s-oksidaza kak pervichnyy fotoaktseptor pri lazernom vozdeystvii sveta vidimogo i blizhnego IK-diapazona na kul’turu kletok [Cytochrome c-oxidase as a primary photoacceptor during laser action of visible and near-IR light on cell culture]. Doklady AN [AN reports]. 1995. V. 342 (5). P. 693–695 (in Russian).
  • Komarov F.I., Zaguskin S.L., Rapoport S.I. Khronobiologicheskoye napravleniye v meditsine: bioupravlyayemaya khronofizioterapiya [Chronobiological direction in medicine: biocontrolled chronophysiotherapy]. Terapevticheskiy arkhiv [Therapeutic archive]. 1994. V. 8. P. 3–6 (in Russian).
  • Moskvin S.V. K voprosu o mekhanizmah terapevticheskogo dejstviya nizkointensivnogo lazernogo izlucheniya (NILI) [Forms and mechanisms of homeostatic synaptic plasticity]. Vestnik novyh medicinskih tekhnologij [Modern technologies in medicine]. 2008. (1). P. 42–45 (In Russian).
  • Neroev V.V., Zueva M.V., Manakhov P.A., Neroeva N.V., Shan A.V., Chuykin N.K., Fadeev D.V. Sposob uluchsheniya funktsional’noy aktivnosti zritel’noy sistemy s pomoshch’yu fraktal’noy fototerapii s ispol’zovaniyem stereoskopicheskogo displeya [A method for improving the functional activity of the visual system using fractal phototherapy using a stereoscopic display]. Patent RF No. 2773684. 2022.
  • Neroev V.V., Zueva M.V., Neroeva N.V., Fadeev D.V., Kotelin V.I., Sumin S.L., Buryi E.V. Ustroystvo dlya fraktal’noy fotostimulyatsii zritelnoy sistemy [Device for fractal photostimulation of the visual system]. Patent RF No. 211969. 2022.
  • Neroev V.V., Zueva M.V., Neroeva N.V., Fadeev D.V., Tsapenko I.V., Okhotsimskaya T.D., Kotelin V.I., Pavlenko T.A., Chesnokova N.B. Vozdeystviye fraktal’noy zritel’noy stimulyatsii na zdorovuyu setchatku krolika: funktsional’nyye, morfometricheskiye i biokhimicheskiye issledovaniya [Effect of fractal visual stimulation on healthy rabbit retina: functional, morphometric and biochemical studies]. Rossiyskiy oftalmologicheskiy zhurnal [Russian ophthalmological journal]. 2022. V. 15 (3). P. 99–111 (in Russian). https://doi.org/10.21516/2072-0076-2022-15-3-99-111
  • Neimark Yu.I., Landa P.S. Stohasticheskie i haoticheskie kolebaniya [Stochastic and chaotic oscillations]. Moskva: Nauka, 1987.
  • Pyankova S.D. Subyektivnyye otsenki vizual’noy slozhnosti i esteticheskoy privlekatel’nosti fraktal’nykh izobrazheniy: individual’nyye razlichiya i geneticheskiye vliyaniya [Subjective assessments of the visual complexity and aesthetic appeal of fractal images: individual differences and genetic influences]. Psikhologicheskiye issledovaniya [Psychological research]. 2019. V. 12 (63). P. 12. (in Russian). https://doi.org/10.54359/ps.v12i63.238
  • Pyankova S.D. Fraktalno analiticheskiye issledovaniya v psikhologii: osobennosti vospriyatiya samopodobnykh obyektov [Fractal-analytical research in psychology: features of perception of self-similar objects]. Psikhologicheskiye issledovaniya [Psychological research]. 2016. V. 9 (46). P. 12 (in Russian).
  • Smirnov V.V., Spiridonov F.F. Fraktal’nye modeli stohasticheskih processov [Fractal models of stochastic processes]. Yuzhnosibirskij nauchnyj vestnik [South Siberian Scientific Bulletin]. 2013. No. 1 (3). P. 99–102.
  • Feder E. Fraktaly [Fractals]. Moskva: Mir, 1991. 254 p.
  • Fedotchev A.I. Fotoinducirovannye rezonansnye yavleniya v elektroencefalogramme cheloveka kak funkciya chastoty, intensivnosti i prodolzhitel’nosti stimulyacii [Photoinduced resonance phenomena in the human electroencephalogram as a function of frequency, intensity and duration of stimulation]. Biofizika [Biophysics].2001. Т. 46 (1). С. 112–117.
  • Fedotchev A.I., Bondar A.T. Tonkaya struktura EEG cheloveka pri raznyh chastotah sensornoj stimulyacii [Fine structure of human EEG at different frequencies of sensory stimulation]. Sensornye sistemy [Sensory systems]. 1993. Т. 7 (2). С. 59–66 (in Russian).
  • Fedotchev A.I., Bondar A.T. Nespetsificheskiye mekhanizmy adaptatsii TSNS k preryvistym razdrazheniyam, spektral’naya struktura EEG i optimal’nyye parametry ritmicheskikh sensornykh vozdeystviy [Nonspecific mechanisms of CNS adaptation to intermittent stimuli, EEG spectral structure and optimal parameters of rhythmic sensory influences]. Uspekhi fiziologicheskikh nauk [Advances in the physiological sciences]. 1996. V. 27 (4). P. 44–62 (in Russian).
  • Fedotchev A.I., Bondar A.T., Akoev I.G. Rezonansnye yavleniya ritmicheskoj svetovoj stimulyacii s razlichnoj intensivnost’yu i chastotoj v EEG cheloveka. [Resonance phenomena of rhythmic light stimulation with different intensity and frequency in human EEG]. Zhurnal Vysshaya nervnaya deyatel’nost’ im. I.P. Pavlova [Journal of Higher Nervous Activity. I.P. Pavlova]. 2001. Т. 51 (1). С. 17–23 (in Russian).
  • Kharauzov A.K., Klimuk M.A., Ponomarev V.A., Ivanova L.E., Podvigina D.N. Elektrofiziologicheskoye issledovaniye ostsillyatornoy aktivnosti mozga obez’yan macaca mulatta [Electrophysiological study of the oscillatory activity of the brain of macaca mulatta monkeys]. Zhurnal evolyutsionnoy biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 2021. V. 57 (3). P. 257–271. https://doi.org/10.31857/S0044452921030050 (in Russian).
  • Shuster G. Determinirovannyj haos [Deterministic chaos]. Moskva: Mir, 1988.
  • Adaikkan C., Middleton S.J., Marco A., Pao P.C., Mathys H., Kim D.N.W. Gamma entrainment binds higher-order brain regions and offers neuroprotection. Neuron. 2019. V. 102. P. 929–943. https://doi.org/10.1016/j.neuron.2019.04.011
  • Agrawal T., Gupta G.K., Rai V., Carroll J.D., Hamblin M.R. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response. 2014. V. 12 (4). P. 619–649. https://doi.org/10.2203/dose-response.14-032.Agrawal
  • Aks D., Sprott J. Quantifying aesthetic preference for chaotic patterns. Empir Stud Arts. 1996. V. 14 (1). P. 1–16.
  • Albarracin R., Natoli R., Rutar M., Valter K., Provis J. 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina. BMC Neurosci. 2013. V. 14. P. 125. https://doi.org/10.1186/1471-2202-14-125
  • Albarracin R., Valter K. 670 nm Red Light Preconditioning Supports Muller Cell Function: Evidence from the White Light-induced Damage Model in the Rat Retina. Photochem. Photobiol. 2012. V. 88 (6). P. 1418–1427. https://doi.org/10.1111/j.1751-1097.2012.01130.x
  • Anders J.J., Arany P.R., Baxter G.D., Lanzafame R.J. Lightemitting diode therapy and low-level light therapy are photobiomodulation therapy. Photobiomodul Photomed Laser Surg. 2019. V. 37. P. 63–65. https://doi.org/10.1089/PHOTOB.2018.4600
  • Babiloni C., Babiloni F., Carducci F., Cincotti F., Vecchio F., Cola B., Rossi S., Miniussi C., Rossini P.M. Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behav. Neurosci. 2004. V. 118. P. 687–697. https://doi.org/10.1037/0735-7044.118.4.687
  • Baldauf D., Desimone R. Neural mechanisms of objectbased attention. Science. 2014. V. 344. P. 424–427. https://doi.org/10.1126/science.1247003
  • Barlow J.S. An electronic method for detecting evoked responses of the brain and for reproducing their average waveforms. Electroencephalography and Clinical Neurophysiology. 1957. V. 9 (2). P. 340–343. https://doi.org/10.1016/0013-4694(57)90068-8
  • Barlow J.S. Rhythmic activity induced by photic stimulation in relation to intrinsic alpha activity of the brain in man. Electroencephalography and Clinical Neurophysiology. 1960. V. 12 (2). P. 317-326. https://doi.org/10.1016/0013-4694(60)90005-5
  • Basar E., Emek-Savaş D.D., Guntekin B., Yener G. Delay of cognitive gamma responses in Alzheimer’s disease. NeuroImage Clin. 2016. V. 11. P. 106–115. https://doi.org/10.1016/j.nicl.2016.01.015
  • Begum R., Powner M.B., Hudson N., Hogg C., Jeffery G. Treatment with 670 nm light upregulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE. 2013. V. 8. P. e57828. https://doi.org/10.1371/journal.pone.0057828
  • Bell G., Marino A., Chesson A., Struve F. Electrical states in the rabbit brain can be altered by light and electromagnetic fields. Brain Res. 1992. V. 570 (1–2). P. 307–15. https://doi.org/10.1016/0006-8993(92)90595-z
  • Bergandi L., Silvagno F., Grisolia G., Ponzetto A., Rapetti E., Astori M., Vercesi A., Lucia U. The Potential of Visible and Far-Red to Near-Infrared Light in Glaucoma Neuroprotection. Appl. Sci. 2021. V. 11. P. 5872. https://doi.org/10.3390/app11135872
  • Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr. 1929. V. 87. P. 527–570. https://doi.org/10.1007/BF01797193
  • Bonaconsa M., Colavito V., Pifferi F., Aujard F., Schenker E., Dix S., Grassi-Zucconi G., Bentivoglio M., Bertini G. Cell clocks and neuronal networks: neuron ticking and synchronization in aging and aging-related neurodegenerative disease. Curr. Alzheimer Res. 2013. V. 10 (6). P. 597–608. https://doi.org/10.2174/15672050113109990004
  • Bondar A., Shubina L. Nonlinear reactions of limbic structure electrical activity in response to rhythmical photostimulation in guinea pigs. Brain Research Bulletin. 2018. V. 143. P. 73–82. https://doi.org/10.1016/j.brainresbull.2018.10.002
  • Cameron M.A., Al Abed A., Buskila Y., Dokos S., Lovell N.H., Morley J.W. Differential effect of brief electrical stimulation on voltage-gated potassium channels. J Neurophysiol. 2017. V. 117 (5). P. 2014–2024. https://doi.org/10.1152/jn.00915.2016
  • Chan J.W., Chan N.C., Sadun A.A. Glaucoma as Neurodegeneration in the Brain. Eye Brain. 2021. V. 13. P. 21–28. https://doi.org/10.2147/EB.S293765
  • Chen Y. Zipf’s law, 1/f noise, and fractal hierarchy. Chaos, Solitons & Fractals. 2012. V. 45 (1). P. 63–73. https://doi.org/10.1016/j.chaos.2011.10.001
  • Cheng W., Law P.K., Kwan H.C., Cheng R.S. Stimulation Therapies and the Relevance of Fractal Dynamics to the Treatment of Diseases. OJRM. 2014. V. 3. P. 73–94. https://doi.org/10.4236/ojrm.2014.34009
  • Cheng Y., Du Y., Liu H., Tang J., Veenstra A., Kern T.S. Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy. Diabetes. 2018. V. 67 (2). P. 291–298. https://doi.org/10.2337/db17-0803
  • Cheung N., Donaghue K.C., Liew G., Rogers S.L., Wang J.J., Lim S.W., Jenkins A.J., Hsu W., Li Lee M., Wong T.Y. Quantitative assessment of early diabetic retinopathy using fractal analysis. Diabetes Care. 2009. V. 32 (1). P. 106–110. https://doi.org/10.2337/dc08-1233
  • Chung H., Dai T., Sharma S.K., Huang Y.-Y., Carroll J.D., Hamblin M.R. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012. V. 40. P. 516–533. https://doi.org/10.1007/s10439- 011- 0454-7
  • Das M., Das D.K. Molecular mechanism of preconditioning. IUBMB Life. 2008. V. 60 (4). P. 199–203. https://doi.org/10.1002/iub.31
  • Di Ieva A., Esteban F.J., Grizzi F., Klonowski W., MartínLandrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015. V. 21 (1). P. 30–43. https://doi.org/10.1177/1073858413513928
  • Di Ieva A., Grizzi F., Jelinek H., Pellionisz A.J., Losa G.A. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2014. V. 20 (4). P. 403–417. https://doi.org/10.1177/1073858413513927
  • Eells J.T., Wong-Riley M.T., VerHoeve J., Henry M., Buchman E.V., Kane M.P., Gould L.J., Das R., Jett M., Hodgson B.D., Margolis D., Whelan H.T. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004. V. 4. P. 559–567. https://doi.org/10.1016/j.mito.2004.07.033
  • Eells J.T., Henry M.M., Summerfelt P., Wong-Riley M.T., Buchmann E.V., Kane M., Whelan N.T., Whelan H.T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A. 2003. V. 100 (6). P. 3439–3444. https://doi.org/10.1073/pnas.0534746100
  • Ellinger F. Medical Radiation Biology. Springfield, 1957.
  • Falsini B., Riva C.E., Logean E. Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest. Ophthalmol. Vis. Sci. 2002. V. 43. P. 2309–2316.
  • Finsen N. La Phototherapie. Paris: Carre ed Naud, Finsen Medicinske Lysinstitut de Copenhague, 1899.
  • Gamaleya N.F., Laser Biomedical Research in the USSR. Laser Applications in Medicine and Biology. Springer US: Boston, MA, 1977. P. 1–173.
  • Gaiarsa J.L., Caillard O., Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 2002. V. 25 (11). P. 564–70. https://doi.org/10.1016/s0166-2236(02)02269-5
  • Geneva I.I. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016. V. 9 (1). P. 145–152. https://doi.org/10.18240/ijo.2016.01.24
  • Gerrow K., Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010. V. 20 (5). P. 631–9. https://doi.org/10.1016/j.conb.2010.06.010
  • Geula C. Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology. 1998. V. 51 (1). P. S18. https://doi.org/10.1212/wnl.51.1_suppl_1.s18
  • Giacci M., Wheeler L., Lovett S., Dishington E., Majda B., Bartlett C., Thornton E., Harford-Wright E., Leonard A., Vink R., Harvey A.R., Provis J., Dunlop S. Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS ONE. 2014. V. 9 (8). P. e104565. https://doi.org/10.1371/journal.pone.0104565
  • Gidday J.M. Adaptive plasticity in the retina: protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond. Med. 2018. V. 1 (2). P. 85–97.
  • Gilbert C.D., Li W. Adult Visual Cortical Plasticity. Neuron. 2012. V. 75 (2). P. 250–264. https://doi.org/10.1016/j.neuron.2012.06.030
  • Goldberger A.L. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. The Lancet. 1996; V. 347 (9011). P. 1312–1314. https://doi.org/10.1016/s0140-6736(96)90948-4
  • Goldberger A.L. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect. Biol. Med. 1997. V. 40. P. 543–561. https://doi.org/10.1353/pbm.1997.0063
  • Goldberger A.L., Amaral L.A.N., Harsdorf J.M., Ivanov P.Ch., Peng C.-K., Stanley H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Nat. Acad. Sci. 2002. V. 99 (1). P. 2466–2472. https://doi.org/10.1073/pnas.012579499
  • Goldberger A.L., Ridney D.R., West B.J. Chaos and fractals in human physiology. Sci. Am. 1990. V. 262 (2). P. 42–49. https://doi.org/10.1038/scientificamerican0290-42
  • Guevara Erra R., Perez Velazquez J.L., Rosenblum M. Neural Synchronization from the Perspective of Nonlinear Dynamics. Front Comput Neurosci. 2017. V. 11. P. 98. https://doi.org/10.3389/fncom.2017.00098
  • Halley J.M., Inchausti P. The increasing importance of 1/f noise as models of ecological variability. Fluctuation and Noise Letters. 2004. V. 4 (2). R1–R26. https://doi.org/10.1142/S0219477504001884
  • Hastings M.H., Reddy A.B., Maywood E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003. V. 4 (8). P. 649–661. https://doi.org/10.1038/nrn1177
  • Hausdorff J.M., Ashkenazy Y., Peng C.K., Ivanov P.C., Stanley H.E., Goldberger A.L. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A. 2001. V. 302. P. 138–147. https://doi.org/10.1016/s0378-4371(01)00460-5
  • Hazard C., Kimport C., and Johnson D. (1998–1999). Fractal Music. Research Project. Available 1 December 2015 at: http://www.tursiops.cc/fm/
  • Heinrichs-Graham E., Kurz M.J., Becker K.M., Santamaria P.M., Gendelman H.E., Wilson T.W. Hypersynchrony despite pathologically reduced beta oscillations in patients with Parkinson’s disease: a pharmaco-magnetoencephalography study. J. Neurophysiol. 2014. V. 112. P. 1739–1747. https://doi.org/10.1152/jn.00383.2014
  • Heiskanen V., Hamblin M.R. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018. V. 17. P. 1003–1017. https://doi.org/10.1039/c8pp9 0049c
  • Henrich-Noack P., Sergeeva E.G., Eber T., You Q., Voigt N., Köhler Y., Wagner S., Lazik S., Mawrin Ch., Xu G., Biswas S., Sabel B.A., Kai-Shun Leung Ch. Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage. Scientific Reports. 2017. V. 7. P. 627. https://doi.org/10.1038/s41598-017-00487-z
  • Herz D.M., Florin E., Christensen M.S., Reck C., Barbe M.T., Tscheuschler M.K. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson’s disease. Cereb Cortex. 2014. V. 24 (11). P. 2873. https://doi.org/10.1093/cercor/bht140
  • Huang T.L., Charyton C. A comprehensive review of the psychological effects of brainwave entrainment. Altern Ther Health Med. 2008. V. 14 (5). P. 38–50.
  • Iaccarino H.F., Singer A.C., Martorell A.J., Rudenko A., Gao F., Gillingham T.Z. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016. V. 540. P. 230–235. https://doi.org/10.1038/nature20587
  • Ingold N. Lichtduschen: geschichte einer gesundheitstechnik. 1890–1975. Zürich. Switzerland: Chronos Verlag, 2015. 280 p. URL: library.oapen.org/handle/20.500.12657/31817.
  • Ivandic B.T., Ivandic T. Low-level laser therapy improves vision in a patient with retinitis pigmentosa. Photomed Laser Surg. 2014. V. 32 (3). P. 181–184. https://doi.org/10.1089/pho.2013.3535
  • Ivanova E., Yee C.W., Baldoni R., Sagdullaev B.T. Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36- containing gap junctions. Exp Eye Res. 2016. V. 150. P. 81–89. https://doi.org/10.1016/j.exer.2015.05.013
  • Jean-Louis G., Zizi F., Lazzaro D.R., Wolintz A.H. Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms. 2008; 6: 1. https://doi.org/10.1186/1740-3391-6-1
  • Johnstone D.M., Moro C., Stone J., Benabid A.-L., Mitrofanis J. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 2016. V. 9. Art. № 500. https://doi.org/10.3389/fnins.2015.00500
  • Kaladchibachi S., Fernandez F. Precision Light for the Treatment of Psychiatric Disorders. Neural Plast. 2018. V. 2018. P. 5868570. https://doi.org/10.1155/2018/5868570
  • Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. Biol. 1999. V. 49 (1). P. 1–17. https://doi.org/10.1016/S1011-1344(98)00219-X
  • Karu T.I., Pyatibrat L.V., Kolyakov S.F., Afanasyeva N.I. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B. 2005. V. 81 (2). P. 98–106. https://doi.org/10.1016/j.jphotobiol.2005.07.002
  • Kim S., Kim S., Khalid A., Jeong Y., Jeong B., Lee S.T., Jung K.H., Chu K., Lee S.K., Jeon D. Rhythmical Photic Stimulation at Alpha Frequencies Produces Antidepressant-Like Effects in a Mouse Model of Depression. PLoS One. 2016. V. 4. 11 (1). P. e0145374. https://doi.org/10.1371/journal.pone.0145374
  • Kim S.I., Jeong J., Kwak Y., Kim Y.I., Jung S.H., Lee K. J. Fractal Stochastic Modeling of Spiking Activity in Suprachiasmatic Nucleus Neurons. J Comput Neurosci. 2005. V. 19. P. 39–51. https://doi.org/10.1007/s10827-005-0149-x
  • Klausner G., Troussier I., Canova CH., Bensadoun R.-J. Clinical use of photobiomodulation as a supportive care during radiation therapy. Support Care Cancer. 2022. V. 30. P. 13–19. https://doi.org/10.1007/s00520-021-06518-w
  • Klimesch W., Sauseng P., Gerloff C. Enhancing Cognitive Performance with Repetitive Transcranial Magnetic Stimulation at Human Individual Alpha Frequency. Eur J Neurosci. 2003. V. 17 (5). P. 1129–1133. https://doi.org/10.1046/j.1460-9568.2003.02517.x
  • Koenig T., Prichep L., Dierks T., Hubl D., Wahlund L.O., John E.R., Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005. V. 26 (2). P. 165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008
  • Koch S., Della-Morte D., Dave K.R., Sacco R.L., PerezPinzon M.A. Biomarkers for ischemic preconditioning: finding the responders. J. Cereb. Blood. Flow Metab. 2014. V. 34 (6). P. 933–941. https://doi.org/10.1038/jcbfm.2014.42
  • Laaksonen K., Helle L., Parkkonen L., Kirveskari E., Mäkelä J.P., Mustanoja S., Tatlisumak T., Kaste M., Forss N. Alterations in spontaneous brain oscillations during stroke recovery. PLoS One. 2013. V. 8. P. e61146. https://doi.org/10.1371/journal.pone.0061146
  • Lazarev V.V., Simpson D.M., Schubsky B.M., Deazevedo L.C. Photic driving in the electroencephalogram of children and adolescents: harmonic structure and relation to the resting state. Braz J Med Biol Res. 2001. V. 34 (12). P. 1573–1584. https://doi.org/10.1590/s0100-879x2001001200010
  • Lee K., Park Y., Suh S.W. Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep. 2021. V. 11. P. 16206. https://doi.org/10.1038/s41598-021-95550-1
  • Li Y., Tong Sh., Liu D., Gai Y., Wang X., Wang J., Qui Y., Zhu Y. Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 2008. V. 119. P. 1232–1241. https://doi.org/10.1016/j.clinph.2008.01.104
  • Lipsitz L.A. Aging as a Process of Complexity Loss. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_28
  • Liu J., Tong K., Lin Y., Lee V.W.H., So K.F., Shih K.C., Lai J.S.M., Chiu K. Effectiveness of Microcurrent Stimulation in Preserving Retinal Function of Blind Leading Retinal Degeneration and Optic Neuropathy: A Systematic Review. Neuromodulation. 2021. V. 24 (6). P. 992–1002. https://doi.org/10.1111/ner.13414
  • Liu X., Zhang C., Ji Z., Ma Y., Shang X., Zhang Q., Zheng W., Zheng W., Li X., Gao J., Wang R., Wang J., Yu H. Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel–Ziv complexity. Cogn. Neurodyn. 2016. V. 10 (2). P. 121–133. https://doi.org/10.1007/s11571-015-9367-8
  • Liu Y.L., Gong S.Y., Xia S.T., Wang Y.L., Peng H., Shen Y., Liu C.F. Light therapy: a new option for neurodegenerative diseases. Chinese Medical Journal. 2021. V. 134 (6). P. 634–645. https://doi.org/10.1097/CM9.0000000000001301
  • Lowen S.B., Teich V.C. Fractal renewal processes generate 1/f noise. Physical review A. Atomic, molecular, and optical physics. 1993. V. 47 (2). P. 992–1001. https://doi.org/10.1103/PhysRevE.47.992
  • Lowen S.B., Ozaki T., Kaplan E., Saleh B.E.A., Teich M.C. Fractal features of dark, maintained, and driven neural discharges in the cat visual system. Methods. 2001. V. 24. P. 377–394. https://doi.org/10.1006/meth.2001.1207
  • Ly T., Gupta N., Weinreb R.N. Kaufman P.L., Yücel Y.H. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis. Res. 2011. V. 51 (2). P. 243–250. https://doi.org/10.1016/j.visres.2010.08.003
  • Mandelbrot B.B. The Fractal Geometry of Nature. Freeman: New York, 1982.
  • Martorell A., Paulson A.L., Suk H.J., Abdurrob F., Drummond G., Guan W., Young J., Kim D., Kritskiy O., Barker S., Mangena V., Prince S., Brown E., Chung K., Boyden E.S., Singer A.C., Tsai L.H. Multi-sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell. 2019. V. 177 (2). P. 256–271. https://doi.org/10.1016/j.cell.2019.02.014
  • McDermott B., Porter E., Hughes D., McGinley B., Lang M., O’Halloran M., Jones M. Gamma Band Neural Stimulation in Humans and the Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. J Alzheimers Dis. 2018. V. 65 (2). P. 363–392. https://doi.org/10.3233/JAD-180391
  • McDonagh A.F. Phototherapy: From Ancient Egypt to the New Millennium. J. Perinatol. 2002. V. 21 (1). P. S7–S12. https://doi.org/10.1038/sj.jp.7210625
  • Menzler J., Channappa L., Zeck G. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One. 2014. V. 9 (8). P. e106047. https://doi.org/10.1371/journal.pone.0106047
  • Mester E., Ludany G., Selyei M., Szende B., Total G.J. The stimulating effect of low power laser rays on biological systems. Laser Rev. 1968. V. 1. P. 3.
  • Mcallister A.K. Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex. 2000. V. 10 (10). P. 963–973. https://doi.org/10.1093/cercor/10.10.963
  • Najjar R.P., Zeitzer J.M. Temporal integration of light flashes by the human circadian system. J. Clin. Invest. 2016. V. 126 (3). P. 938–947. https://doi.org/10.1172/JCI82306
  • Natoli R., Valter K., Barbosa M., Dahlstrom J., Rutar M., Kent A., Provis J. 670nm Photobiomodulation as a Novel Protection against Retinopathy of Prematurity: Evidence from Oxygen Induced Retinopathy Models. PLoS ONE. 2013. V. 8 (8). P. e72135. https://doi.org/10.1371/journal.pone.0072135
  • Natoli R., Zhu Y., Valter K., Bisti S., Eells J., Stone J. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010. V. 16. P. 1801–1822.
  • Noonan J.E., Lamoureux E.L., Sarossy M. Neuronal activity-dependent regulation of retinal blood flow. Clin. Exp. Ophthalmol. 2015. V. 43. P. 673–682. https://doi.org/10.1111/ceo.12530
  • Notbohm A., Herrmann C.S. Flicker regularity is crucial for entrainment of alpha oscillations. Front. Human Neurosci. 2016. V. 10. P. 503. https://doi.org/10.3389/fnhum.2016.00503
  • Pantazopoulos H., Gamble K., Stork O., Amir S. Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders. Neural Plast. 2018. V. 2018. P. 5892657. https://doi.org/10.1155/2018/5892657
  • Park Y., Lee K., Park J., Bae J.B., Kim S.-S., Kim D.-W., Woo S.J., Yoo S., Kim K.W. Optimal flickering light stimulation for entraining gamma rhythms in older adults. Sci Rep. 2022. V. 12. P. 15550. https://doi.org/10.1038/S41598-022-19464-2
  • Passaglia C.L., Troy J.B. Impact of Noise on Retinal Coding of Visual Signals. J. Neurophysiol. 2004. V. 92. P. 1023–1033. https://doi.org/10.1152/jn.01089.2003
  • Pascual-Leone A., Freitas C., Oberman L., Horvath J.C., Halko M., Eldaief M., Bashir S., Vernet M., Shafi M., Westover B., Vahabzadeh-Hagh A.M., Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011. V. 24. P. 302–315. https://doi.org/10.1007/s10548-011-0196-8
  • Peng C.-K., Mietus J., Hausdorff J.M., Havlin S., Stanley H.E., Goldberger A.L. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 1993. V. 70. P. 1343–1346. https://doi.org/10.1103/PhysRevLett.70.1343
  • Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511755743
  • Pino O. A randomized controlled trial (RCT) to explore the effect of audio-visual entrainment among psychological disorders. Acta Biomed. 2022. V. 92 (6). P. e2021408. https://doi.org/10.23750/abm.v92i6.12089
  • Pogosyan A., Gaynor L.D., Eusebio A., Brown P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol. 2009. V. 19 (19). P. 1637–1641. https://doi.org/10.1016/j.cub.2009.07.074
  • Polak K., Schmetterer L., Riva C.E. Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest. Ophthalmol. Vis. Sci. 2002. V. 43 (8). P. 2721–2726.
  • Porcu A., Riddle M., Dulcis D., Welsh D.K. PhotoperiodInduced Neuroplasticity in the Circadian System. Neural Plast. 2018. V. 2018. P. 5147585. https://doi.org/10.1155/2018/5147585
  • Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012. V. 32 (4). P. 354–358. https://doi.org/10.1097/WNO.0b013e3182745600
  • Quirk B.J., Desmet K.D., Henry M. Therapeutic effect of near infrared (NIR) light on Parkinson’s disease models. Front. Biosci. 2012. V. 4. P. 818–823. https://doi.org/10.2741/E421
  • Rabinovich M.I., Abarbanel H.D. The role of chaos in neural systems. Neuroscience. 1998. V. 87 (1). P. 5–14. https://doi.org/10.1016/s0306-4522(98)00091-8
  • Rahman S.A., St Hilaire M.A., Chang A.M. Circadian phase resetting by a single short-duration light exposure. JCI Insight. 2017. V. 2 (7). P. e89494. https://doi.org/10.1172/jci.insight.89494
  • Reichenbach A., Bringmann A. New functions of muller cells. Glia. 2013. V. 61 (5). P. 651–678. https://doi.org/10.1002/glia.22477
  • Rieke F., Baylor D.A. Origin and functional impact of dark noise in retinal cones. Neuron. 2000. V. 26 (1). P. 181–186. https://doi.org/10.1016/s0896-6273(00)81148-4
  • Riva C.E., Falsini B., Logean E. Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest. Ophthalmol. Vis. Sci. 2001. V. 42 (3). P. 756–762.
  • Riva C.E., Logean E., Falsini B. Temporal dynamics and magnitude of the blood flow response at the optic disk in normal subjects during functional retinal flickerstimulation. Neurosci. Lett. 2004. V. 356 (2). P. 75–78. https://doi.org/10.1016/j.neulet.2003.08.069
  • Rodriguez E., George N., Lachaux J.P., Martinerie J., Renault B., Varela F.J. Perception’s shadow: long-distance synchronization of human brain activity. Nature. 1999. V. 397 (6718). P. 430–433. https://doi.org/10.1038/17120
  • Rojas J.C., Lee J., John J.M., Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci. 2008. V. 28. P. 13511–13521. https://doi.org/10.1523/JNEUROSCI.3457-08.2008
  • Rojas J.C., Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye & Brain. 2011. V. 3. P. 49–67. https://doi.org/10.2147/EB.S21391
  • Roux F., Wibral M., Mohr H.M., Singer W., Uhlhaas P.J. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J. Neurosci. 2012. V. 32. P. 12411–12420. https://doi.org/10.1523/jneurosci.0421-12.2012
  • Salansky N., Fedotchev A., Bondar A. Responses of the nervous system to low frequency stimulation and EEG rhythms: clinical implications. Neurosci Biobehav Rev. 1998. V. 22 (3). P. 395–409. https://doi.org/10.1016/s0149-7634(97)00029-8
  • Sehic A., Guo S., Cho K.-S., Corraya R.M., Chen D.F., Utheim T.P. Electrical stimulation as a means for improving vision. Am J Pathol. 2016. V. 186. № 11. P. 2783–2797. https://doi.org/10.1016/j.ajpath.2016.07.017
  • Shin Y.W., O’Donnell B.F., Youn S., Kwon J.S. Gamma oscillation in schizophrenia. Psychiatry Investig. 2011. V. 8 (4). P. 288–296. https://doi.org/10.4306/pi.2011.8.4.288
  • Siebner H.R., Ziemann U. Rippling the cortex with highfrequency (>100 Hz) alternating current stimulation. J. Physiol. 2010. V. 588 (Pt. 24). P. 4851. https://doi.org/10.1113/jphysiol.2010.200857
  • Siever D., Collura T. Audio–Visual Entrainment: Physiological Mechanisms and Clinical Outcomes. In: Rhythmic Stimulation Procedures in Neuromodulation. Ed. by J.R. Evans and R.R. Turner. Academic Press, 2017. P. 51–95.
  • Silvestre D., Arleo A., Allard R. Internal noise sources limiting contrast sensitivity. Sci Rep. 2018. V. 8 (1). P. 2596. https://doi.org/10.1038/s41598-018-20619-3
  • Srinivasan A., Karuppathal E., Venkatesan K.R., Kalpana R. Brainwave Entrainment through External Sensory Stimulus: A Therapy for Insomnia (1784). Neurology. 2020. V. 94 (15).
  • Storch D., Gaston K.J., Cepák J. Pink landscapes: 1/f spectra of spatial environmental variability and bird community composition. Proc Biol Sci. 2002. V. 269. P. 1791–1796. https://doi.org/10.1098/rspb.2002.2076
  • Tang H., Vitiello M.V., Perlis M., Mao J.J., Riegel B. A pilot study of audio-visual stimulation as a self-care treatment for insomnia in adults with insomnia and chronic pain. Appl Psychophysiol Biofeedback. 2014. V. 39 (3–4). P. 219–225. https://doi.org/10.1007/s10484-014-9263-8
  • Tang J., Herda A.A., Kern T.S. Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol. 2014. V. 98. P. 1013–1015. https://doi.org/10.1136/bjophthalmol-2013-304477
  • Taylor R.P., Spehar B., Donkelaar P.V., Hagerhall C.M. Perceptual and physiological responses to Jackson Pollock’s fractals. Front Hum Neurosci. 2011. V. 5. P. 60. https://doi.org/10.3389/fnhum.2011.00060
  • Taylor R.P., Spehar B., Wise J.A., Clifford C.W., Newell B.R., Hagerhall C.M., Purcell T., Martin T.P. Perceptual and physiological responses to the visual complexity of fractal patterns. Nonlinear Dynamics Psychol Life Sci. 2005. V. 9. P. 89–114.
  • Taylor R.P., Sprott J.C. Biophilic fractals and the visual journey of organic Screen-savers. J Non-Linear Dyn Psychol Life Sci. 2008. V. 12. P. 117–129.
  • Taylor R.P. The Potential of Biophilic Fractal Designs to Promote Health and Performance: A Review of Experiments and Applications. Sustainability. 2021. V. 13. P. 823. https://doi.org/10.3390/su13020823
  • Teich M.C., Heneghan C., Lowen S.B., Ozaki T., Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am A. 1997. V. 14. P. 529–546. https://doi.org/10.1364/josaa.14.000529
  • Thut G., Veniero D., Romei V., Miniussi C., Schyns P., Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011. V. 21 (14). P. 1176–1185. https://doi.org/10.1016/j.cub.2011.05.049
  • Traikapi A., Konstantinou N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front. Syst. Neurosci. 2021. V. 15. P. 782399. https://doi.org/10.3389/fnsys.2021.782399
  • Turrigiano G.G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008. V. 135 (3). P: 422–435. https://doi.org/10.1016/j.cell.2008.10.008
  • Uhlhaas P.J., Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010. V. 11 (2). P. 100–113. https://doi.org/10.1038/nrn2774
  • Vasseur D.A., Yodzis P. The color of environmental noise. Ecology. 2004. V. 85(4). P. 1146–1152. https://doi.org/10.1890/02-3122
  • Verrotti A., Tocco A.M., Salladini C., Latini G., Chiarelli F. Human photosensitivity: from pathophysiology to treatment. Eur J Neurol. 2005. V. 12 (11). P. 828–841. https://doi.org/10.1111/j.1468-1331.2005.01085.x
  • Von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int. J. Mol. Sci. 2022. V. 23. P. 2778. https://doi.org/10.3390/ijms23052778
  • Westlake K.P., Hinkley L.B., Bucci M., Guggisberg A.G., Byl N., Findlay A.M., Henry R.G., Nagarajan S.S. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012. V. 237. P. 160–169. https://doi.org/10.1016/j.expneurol.2012.06.020
  • Wilkins A., Veitch J., Lehman B. LED lighting flicker and potential health concerns: IEEE standard PAR1789 update 2010. IEEE Energy Conversion Congress and Exposition, 2010. P. 171–178. https://doi.org/10.1109/ECCE.2010.5618050
  • Wilkins A.J., Bonanni P., Porciatti V., Guerrini R. Physiology of human photosensitivity. Epilepsia. 2004. V. 45 (1). P. 7–13. https://doi.org/10.1111/j.0013-9580.2004.451009x
  • Williams J., Ramaswamy D., Oulhaj A. 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 2006. V. 7 (5). P. 21. https://doi.org/10.1186/1471-2202-7-21
  • Williams J.H. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001. V. 104. P. 283–286. https://doi.org/10.1016/s0306-4522(00)00579-0
  • Yamamoto Y., Hughson R.L. On the fractal nature of heart rate variability in humans: effects of data length and β-adrenergic blockade. Am. J. Physiol. 1994. V. 266. R40–R49. https://doi.org/10.1152/ajpregu.1994.266.1.r40
  • Yu W.-S., Kwon S.-H., Agadagba S.K., Chan L.-L.-H., Wong K.-H., Lim L.-W. Neuroprotective effects and therapeutic potential of transcorneal electrical stimulation for depression. Cells. 2021. V. 10. P. 2492. https://doi.org/10.3390/cells10092492
  • Yuvaraj R., Murugappan M. Hemispheric asymmetry nonlinear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients. Cogn. Neurodyn. 2016. V. 10 (3). P. 225. https://doi.org/10.1007/s11571-016-9375-3
  • Zaehle T., Rach S., Herrmann C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010. V. 5. P. e13766. https://doi.org/10.1371/journal.pone.0013766
  • Zafar S., Sachdeva M., Frankfort B.J., Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr. Diabetes Rep. 2019. V. 19 (4). P. 17. https://doi.org/10.1007/s11892-019-1134-5
  • Zeck G. Aberrant activity in degenerated retinas revealed by electrical imaging. Front Cell Neurosci. 2016. V. 10. P. 25. https://doi.org/10.3389/FNCEL.2016.00025
  • Zhang Y., Wang C., Sun C., Zhang X., Wang Y., Qi H., He F., Zhao X., Wan B., Du J., Ming D. Neural complexity in patients with poststroke depression: A resting EEG study. J Affect Disord. 2015. V. 188. P. 310–318. https://doi.org/10.1016/j.jad.2015.09.017
  • Zhang Y.S., Guo D., Xu P., Zhang Y., Yao D. Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index. Cogn. Neurodyn. 2016. V. 10. P. 505–511. https://doi.org/10.1007/s11571-016-9398-9
  • Zhuang J., Madden D.J., Cunha P., Badea A., Davis S.W., Potter G.G., Lad E.M., Cousins S.W., Chen N.-K., Allen K., Maciejewski A.J., Fernandez X.D., Diaz M.T., Whitson H.E. Cerebral white matter connectivity, cognition, and age-related macular degeneration. NeuroImage: Clinical. 2021. V. 30. P. 102594. https://doi.org/10.1016/j.nicl.2021.102594
  • Zueva M., Spiridonov I., Semenova N., Tsapenko I., Maglakelidze N., Stadelman J. The LED fractal stimulator and first evidence of its application in electroretinography. Doc. Ophthalmologica. 2017. V. 135 (Suppl 1). P. 35–36. https://doi.org/10.1007/s10633-017-9609-7
  • Zueva M.V. Dynamic fractal flickering as a tool in research of non- linear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Appl Sci J. 2013. V. 4 (27). P. 462–468. https://doi.org/10.5829/idosi.wasj.2013.27.04.13657
  • Zueva M.V. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Front Aging Neurosci. 2015. V. 7. P. 135. https://doi.org/10.3389/fnagi.2015.00135
  • Zueva M.V., Kovalevskaya M.A., Donkareva O.V., Starikova M.A., Karankevitch A.I., Taranov A.A., Antonyan V.B. The impact of complex-structured optical signals on color perception and light sensitivity in patients with suspicion of glaucoma and primary open-angle glaucoma. J Clin Exp Ophthalmol. 2018. V. 9. P. 74. https://doi.org/10.4172/2155-9570-C8-100