• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Electroretinographic examinations of the crew members of the 8-month international experiment SIRIUS 20/21

© 2023 V. V. Neroev, I. V. Tsapenko, V. I. Kotelin, M. V. Zueva, O. M. Manko, A. M. Aleskerov, D. A. Podyanov

Helmholtz Medical Research Center of Eye Diseases 105062 Moscow, St. Sadovaya-Chernogryazskaya, 14/19, Russia
Institute of Biomedical Problems RAS Moscow Russia 123007 Moscow, Khoroshevskoe sh., 76A, Russia

Received 29 Dec 2022

Before and after the 8-month international experiment SIRIUS 20/21, a complex of electrophysiological testing of the visual system was performed, including registration of standard photopic electroretinograms (ERG), flicker ERG response on flickering with a frequency of 8.3, 10, 12 and 24 Hz, photopic negative response, and pattern-ERG. The aim of the work was an objective assessment of changes in the functional activity of retinal neurons in ground station crew members associated with long-term isolation and the influence of a complex of stress factors. The results obtained indicate a moderate activation of the bioelectrical activity of photoreceptors and bipolar cells and a slight decrease in the function of retinal ganglion cells after isolation experiment. The revealed changes may reflect the adaptation of the visual sensory system of the testers to physical and psycho-emotional stress in the experimental conditions. Further study of the specifics of changes in electroretinographic markers with a longer duration of the experiment is necessary to expand the understanding of stress resistance and adaptation of the visual system during prolonged exposure to extreme environmental conditions.

Key words: long-term isolation, ground station, electroretinography, retina, photoreceptors, retinal bipolar cells, retinal ganglion cells, SIRIUS 20/21

DOI: 10.31857/S0235009223020038  EDN: QSYHIW

Cite: Neroev V. V., Tsapenko I. V., Kotelin V. I., Zueva M. V., Manko O. M., Aleskerov A. M., Podyanov D. A. Elektroretinograficheskie issledovaniya ekipazha 8-mesyachnogo mezhdunarodnogo eksperimenta sirius 20/21 [Electroretinographic examinations of the crew members of the 8-month international experiment sirius 20/21]. Sensornye sistemy [Sensory systems]. 2023. V. 37(2). P. 152–161 (in Russian). doi: 10.31857/S0235009223020038

References:

  • Byzov A.L. Fiziologija zrenija [Physiology of vision]. M.: Nauka, 1992. P. 115–161. (in Russian).
  • Byzov A.L. Funkcii nejroglii [Functions of neuroglia]. Tbilisi: Mecniereba, 1979. P. 49–57. (in Russian).
  • Zueva M.V., Neroev V.V., Tsapenko I.V., Sarygina O.I., Grinchenko M.I., Zaitseva S.I. Topograficheskaja diagnostika narushenij retinal’noj funkcii pri regmatogennoj otslojke setchatki metodom ritmicheskoj JeRG shirokogo spektra chastot [Topographic diagnostics of retinal function disorders in rhegmatogenous retinal detachment by rhythmic ERG of a wide frequency spectrum]. Rossiyskiy oftal’mologicheskiy zhurnal [Russian ophthalmological journal]. 2009. V. 1 (2). P. 18–23 (in Russian).
  • Zueva M.V., Tsapenko I.V. Kletki Mjullera: spektr i profil' glio-nejronal’nyh vzaimodejstvij v setchatke [Muller cells: spectrum and profile of glio-neuronal interactions in the retina]. Rossijskij fiziologicheskij zhurnal im. Sechenova [Journal of Evolutionary Biochemistry and Physiology]. 2004. V. 90 (8). P. 435–436 (in Russian).
  • Zueva M.V., Tsapenko I.V. Jelektrofiziologicheskaja harakteristika glial’no-nejronal’nyh vzaimootnoshenij pri retinal’noj patologii [Electrophysiological characteristics of glial-neuronal relationships in retinal pathology]. Sensornye sistemy [Neuroscience and Behavioral Physiology]. 1992 (3). P. 58–63 (in Russian).
  • Kotelin V.I., Kirillova M.O., Zueva M.V., Tsapenko I.V., Zhuravleva A.N., Kiseleva O.A., Bessmertny A.M. Fotopicheskij negativnyj otvet dlja ocenki funkcii vnutrennej setchatki: trebovanija k registracii i sravnenie v glazah s estestvennoj shirinoj zrachka i v uslovijah medikamentoznogo midriaza [Photopic negative response for testing the function of inner retina: registration requirements and comparison in the eyes with natural pupil width and in conditions of drug mydriasis]. Oftalmologiya [Ophthalmology in Russia]. 2020. V. 17 (3). P. 398–406 (in Russian). https://doi.org/10.18008/1816-5095-2020-3-398-406
  • Neroev V.V., Zueva M.V., Zhuravleva A.N., Tsapenko I.V. Strukturno-funkcional’nye narushenija pri glaukome: perspektivy doklinicheskoj diagnostiki. Chast’ 2. Jelektrofiziologicheskie markery rannih nejroplasticheskih sobytij [Structural and functional disorders in glaucoma: prospects for preclinical diagnosis. Part 2]. Electrophysiological Markers of Early Neuroplastic Events. Oftalmologiya [Ophthalmology in Russia]. 2020. V. 17 (3s). P. 533–541 (in Russian). https://doi.org/10.18008/1816-5095-2020-3S-533-541
  • Allen C.S., Giraudo M., Moratto C., Yamaguchi N. Spaceflight environment. In: Space safety and human performance [Internet]. Elsevier, 2018. P. 87–138.
  • Bach M., Brigell M.G., Hawlina M., Holder G.E., Johnson M.A., McCulloch D.L., Meigen T., Viswanathan S. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013. V. 126 (1). P. 1–7. https://doi.org/10.1007/s10633-012-9353-y
  • Bach M., Unsoeld A.S., Philippin H., Staubach F., Maier P., Walter H.S., Bomer T.G., Funk J. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci. 2006. V. 47 (11). P. 4881–4887. https://doi.org/10.1167/iovs.05-0875
  • Basner M., Babisch W., Davis A., Brink M., Clark C., Janssen S., Stansfeld S. Auditory and non-auditory effects of noise on health. Lancet. 2014. V. 383 (9925). P. 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X
  • Basner M., Dinges D.F., Mollicone D., Ecker A., Jones C.W., Hyder E.C., Di Antonio A., Savelev I., Kan K., Goel N., Morukov B.V., Sutton J.P. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proc Natl Acad Sci U S A. 2013. V. 110 (7). P. 2635–40. https://doi.org/10.1073/pnas.1212646110
  • Bush R.A., Sieving P.A. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci. 1994. V. 35 (2). P. 635–645.
  • Clarke A.H., Haslwanter T. The orientation of Listing’s Plane in microgravity. Vision Res. 2007. V. 47. P. 3132–3140. https://doi.org/10.1016/J.VISRES.2007.09.001
  • Clément G., Ngo-Anh J.T. Space Physiology II: Adaptation of the Central Nervous Systemto Space Flight-Past, Current, and Future Studies. Berlin: Springer-Verlag, 2013. https://doi.org/10.1007/s00421-012-2509-3
  • Eckstein M.K., Guerra-Carrillo B., Miller Singley A.T., Bunge S.A. Beyond eye gaze: what else can eyetracking reveal about cognition and cognitive development? Dev Cogn Neurosci. 2017. V. 25. P. 69–91. https://doi.org/10.1016/J.DCN.2016.11.001
  • Frishman L., Sustar M., Kremers J., McAnany J.J., Sarossy M., Tzekov R., Viswanathan S. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018. V. 36 (3). P. 207–211. https://doi.org/10.1007/s10633-018-9638-x
  • Frishman L.J. Origins of the electroretinogram. Principles and Practice of Clinical Electrophysiology of Vision. London: MIT Press, 2006. P. 139–183.
  • Granholm E., Asarnow R.F., Sarkin A.J., Dykes K.L. Pupillary responses index cognitive resource limitations. Psychophysiology. 1996. V. 33. P. 457–461. https://doi.org/10.1111/j.1469-8986.1996.tb01071.x
  • Koles M., Hercegfi K. Eye tracking precision in a virtual CAVE environment. 2015 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom) (Piscataway: IEEE), 2015. P. 319–322. https://doi.org/10.1109/CogInfoCom.2015.7390611
  • Kondo M., Sieving P.A. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs. Invest Ophthalmol Vis Sci. 2001. V. 42 (1). P. 305–312.
  • Machida S., Raz-Prag D., Fariss R.N., Sieving P.A., Bush R.A. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci. 2008. V. 49 (1). P. 442–52. https://doi.org/10.1167/iovs.07-0291
  • Matsui Y., Katsumi O., Sakaue H., Hirose T. Electroretinogram b/a wave ratio improvement in central retinal vein obstruction. Br J Ophthalmol. 1994. V. 78 (3). P. 191–198. https://doi.org/10.1136/bjo.78.3.191
  • McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015. V. 130 (1). P. 1–12. https://doi.org/10.1007/s10633-014-9473-7
  • Mogilever N.B., Zuccarelli L., Burles F., Iaria G., Strapazzon G., Bessone L., Coffey E.B.J. Expedition cognition: A review and prospective of subterranean neuroscience with spaceflight applications. Front Hum Neurosci. 2018. V. 12. P. 407. https://doi.org/10.3389/fnhum.2018.00407
  • Rajulu S. Human factors and safety in EVA. Space Safety and Human Performance. Butterworth-Heinemann, 2018. P. 469–500. https://doi.org/10.1016/B978-0-08-101869-9.00011-X
  • Salgarelo T., Cozzupoli G.M., Giudiceandrea A., Fadda F., Placidi G., De Siena E., Amore F., Rizzo S., Falsini B. PERG adaptation for detection of retinal ganglion cell dysfunction in glaucoma: a pilot diagnostic accuracy study. Scientific Reports. 2021. V. 11. Article 22879.
  • Sieving P.A., Murayama K., Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994. V. 11 (3). P. 519–532. https://doi.org/10.1017/S0952523800002431
  • Stansfeld S.A., Matheson M.P. Noise pollution: non-auditory effects on health. Br Med Bull. 2003. V. 68. P. 243–257. https://doi.org/10.1093/bmb/ldg033
  • Stockton R.A., Slaughter M.M. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989. V. 93 (1). P. 101–122. https://doi.org/10.1085/jgp.93.1.101
  • Ventura L.M., Sorokac N., De Los Santos R., Feuer W.J., Porciatti V. The Relationship between Retinal Ganglion Cell Function and Retinal Nerve Fiber Thickness in Early Glaucoma. Invest Ophthalmol Vis Sci. 2006. V. 47 (9). P. 3904–3911. https://doi.org/10.1167/iovs.06-0161
  • Viswanathan S., Frishman L.J., Robson J.G., Harwerth R.S., Smith E.L. 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999. V. 40 (6). P. 1124–1136.