The paper considers the problem of classification of agricultural crops. As is known, to solve this problem, it is much
more efficient to use not instantaneous remote sensing data or calculated vegetation indices, but their historical
series. Time series formed by index values for a fixed spatial point at different dates are characterized by a high
level of missing values, caused primarily by cloudiness on some dates. A study of known methods of time series
approximation has been carried out. The question of whether reducing the dimensionality of the approximated time series
can improve the quality of crops classification is also investigated. In the experimental part of the work, NDVI time
series calculated from the Sentinel-2 multispectral satellite data were used. The classification of corn, sunflower,
wheat and soybeans was studied. The paper shows that UMAP usage for dimensionality reduction leads to 1.5 times increase
of classification quality in terms of average the F1-measure compared to using the original dimension data. A new crop
classification method based on cubic spline approximation of NDVI time series, extraction of features of low dimension
by the UMAP algorithm and their classification by the k nearest neighbors method is proposed.
Key words:
Remote sensing, crop classification, time series, NDVI, time series fitting, feature extraction, dimensionality
reduction, UMAP
DOI: 10.31857/S023500922302004X
EDN: QSZZFT
Cite:
Pavlova M. A., Sidorchuk D. S., Bocharov D. A.
Klassifikatsiya selskokhozyaistvennykh kultur na osnove analiza vremennykh ryadov vegetatsionnogo indeksa c ponizheniem ikh razmernosti
[Classification of crops by ndvi time series of reduced dimensionality].
Sensornye sistemy [Sensory systems].
2023.
V. 37(2).
P. 171–180 (in Russian). doi: 10.31857/S023500922302004X
References:
- Bartalev S.A., Lupyan E.A., Nejshtadt I.A., Savin I.Yu. Klassifikatsiya nekotorykh tipov sel’skokhozyaistvennykh posevov v yuzhnykh regionakh Rossii po sputnikovym dannym MODIS [Classification of some types of agricultural crops in the southern regions of Russia according to MODIS satellite data.]. Issledovanie Zemli iz kosmosa [Earth exploration from space]. 2006. V. 3. P. 68–75 (in Russian).
- Bakhtadzel N., Maximov E., Maximova N., Donchan D., Kuznetsov D., Zakharov E. Intelligent Management Systems for Digital Farming. Part 1. Informacionnye tekhnologii i vychislitel’nye sistemy [Information technologies and computing systems]. 2020. V. 2. P. 99–111. https://doi.org/10.14357/20718632200208
- Blokhina S.Yu. The application of remote sensing in precision agriculture. Vestnik of the Russian agricultural science. 2018. (5). P. 10–16 (in Russian). https://doi.org/10.30850/vrsn/2018/5/10-16
- Bocharov D.A., Nikolaev D.P., Pavlova M.A., Timofeev V.A. Cloud Shadows Detection and Compensation Algorithm on Multispectral Satellite Images for Agricultural Regions. JCTE.2022. V. 67. № 6. P. 728–739. https://doi.org/10.1134/S1064226922060171
- Vorob’eva N.S., Chernov A.V. Approksimatsiya vremennykh ryadov NDVI v zadache rannego raspoznavaniya vidov sel’skokhozyaistvennykh kul’tur po kosmicheskim snimkam [Approximation of NDVI time series in the problem of early recognition of crop species from satellite images]. Sbornik trudov III mezhdunarodnoi konferentsii i molodezhnoi shkoly “Informatsionnye tekhnologii i nanotekhnologii” (ITNT-2017)-Samara: Novaya tekhnika [Proceedings of the III International Conference and Youth School “Information Technology and Nanotechnology” (ITNT-2017) – Samara: New technology]. Samara. 2017. P. 390–399 (in Russian).
- Pavlova M.A., Sidorchuk D.S., Kushchev D.O., Bocharov D.A., Nikolaev D.P. Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs. JCTE. 2022. V. 67. № 2. https://doi.org/10.1134/S1064226922140066
- Plotnikov D.E., Bartalev S.A., Zharko V.O., Mihailov V.V., Prosyannikova O.I. An experimental assessment of crop types recognisability using time-series of intraseasonal spectral reflectance measurements by satellite sensor. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2011. V. 8 (1). P. 199–208 (in Russian).
- Pugacheva I.Yu., Shevyrnogov A.P. Izuchenie dinamiki NDVI posevov sel’skokhozyaistvennykh kul’tur na territorii Krasnoyarskogo kraya i Respubliki Khakasiya [The study of the dynamics of NDVI crops of agricultural crops in the territory of the Krasnoyarsk Territory and the Republic of Khakassia]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2008. V. 5 (2). P. 347–351 (in Russian).
- Firsov N., Podlipnov V., Ivliev N., Nikolaev. P, Mashkov S., Ishkin P., Skidanov R., Nikonorov A. Neural networkaided classification of hyperspectral vegetation images with a training sample generated using an adaptive vegetation index. Computer Optics. 2021. V. 45 (6). P. 887–896 (in Russian). https://doi.org/10.18287/2412-6179-CO-1038
- Cherepanov A.S., Druzhinina E.G. Spektral’nye svoistva rastitel’nosti i vegetatsionnye indeksy [Spectral properties of vegetation and vegetation indices]. Geomatika [Geomatics]. 2009. V. 3. P. 28–32 (in Russian).
- Yakushev V.P., Dubenok N.N., Loupian E.A. Earth remote sensing technologies for agriculture: application experience and development prospects. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2019. V. 16 (3). P. 11 (in Russian).
- Abe B.T., Jordaan J.A. Hyperspectral image classification based on NMF Features Selection Method. Sixth International Conference on Machine Vision (ICMV 2013). SPIE, 2013. T. 9067. C. 114–119. https://doi.org/10.1117/12.2050072
- Belda S., Pipia L., Morcillo-Pallarés P., Verrelst J. Optimizing gaussian process regression for image time series gap-filling and crop monitoring. Agronomy. 2020. T. 10. № 5. C. 618. https://doi.org/10.3390/agronomy10050618
- Bouteldja S., Kourgli A. A comparative analysis of SVM, K-NN, and decision trees for high resolution satellite image scene classification. Twelfth International Conference on Machine Vision (ICMV 2019). SPIE, 2020. T. 11433. C. 410–416. https://doi.org/10.1117/12.2557563
- Chakhar A., Hernández-López D., Ballesteros R., Moreno M.A. Improving the accuracy of multiple algorithms for crop classification by integrating sentinel-1 observations with sentinel-2 data. Remote Sensing. 2021. T. 13. № 2. C. 243. https://doi.org/10.3390/rs13020243
- Gilbertson J.K., Van Niekerk A. Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning. Computers and Electronics in Agriculture. 2017. T. 142. C. 50–58. https://doi.org/10.1016/j.compag.2017.08.024
- Groten S.M.E. NDVI–crop monitoring and early yield assessment of Burkina Faso. International Journal of Remote Sensing. 1993. T. 14. № 8. C. 1495–1515. https://doi.org/10.1080/01431169308953983
- Hird J.N., McDermid G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment. 2009. T. 113. № 1. C. 248–258. https://doi.org/10.1016/j.rse.2008.09.003
- Li J., Shen Y., Yang C. An adversarial generative network for crop classification from remote sensing timeseries images. Remote Sensing. 2020. T. 13. № 1. C. 65. https://doi.org/10.3390/rs13010065
- McInnes L., Healy J., Melville J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. 2018. https://doi.org/10.48550/arXiv.1802.03426
- Murmu S., Biswas S. Application of fuzzy logic and neural network in crop classification: a review. Aquatic Procedia. 2015. T. 4. C. 1203–1210. https://doi.org/10.1016/j.aqpro.2015.02.153
- Orynbaikyzy A., Gessner U., Conrad C. Crop type classification using a combination of optical and radar remote sensing data: A review. International journal of remote sensing. 2019. T. 40. №. 17. C. 6553–6595. https://doi.org/10.1080/01431161.2019.1569791
- Reedha R., Dericquebourg E., Canals R., Hafiane A. Transformer neural network for weed and crop classification of high resolution UAV images. Remote Sensing. 2022. T. 14. № 3. C. 592. https://doi.org/10.3390/rs14030592
- Rußwurm M., Körner M. Self-attention for raw optical satellite time series classification. ISPRS journal of photogrammetry and remote sensing. 2020. T. 169. C. 421–435. https://doi.org/10.1016/j.isprsjprs.2020.06.006
- Sishodia R.P., Ray R.L., Singh S.K. Applications of remote sensing in precision agriculture: A review. Remote Sensing. 2020. T. 12. № 19. C. 3136. https://doi.org/10.3390/rs12193136
- Sun R., Chen S., Su H., Mi C., Jin N. The effect of NDVI time series density derived from spatiotemporal fusion of multisource remote sensing data on crop classification accuracy. ISPRS International Journal of Geo-Information. 2019. T. 8. № 11. C. 502. https://doi.org/10.3390/ijgi8110502
- Velliangiri S., Alagumuthukrishnan S., Thankumar S.I. A review of dimensionality reduction techniques for efficient computation. Procedia Computer Science. 2019. T. 165. C. 104–111. https://doi.org/10.1016/j.procs.2020.01.079
- Yang S., Gu L., Li X., Jiang T., Ren R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote sensing. 2020. T. 12. № 19. C. 3119. https://doi.org/10.3390/rs12193119
- Zhang S., Lei Y., Wang L., Li H., Zhao H. Crop classification using MODIS NDVI data denoised by wavelet: A case study in Hebei Plain, China. Chinese Geographical Science. 2011. T. 21. C. 322–333. https://doi.org/10.1007/s11769-011-0472-2