• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Radio-sensor technical diagnosis complex electronic assembly

© 2022 K. A. Boikov

MIREA – Russian Technological University 119454 Moscow, prosp. Vernadsky, 78, Russia

Received 14 Feb 2022

The main advantages of the method of passive radiosensor technical diagnostics (PRTD) over the most significant methods for determining the technical condition (vibrometry, thermal control, JTAG testing, optical control) are: no inertia, no processor time, no galvanic contact with the object of study. In modern scientific literature, almost no attention is paid to the analysis of signal radio profiles (SRP) of the electrical component of electromagnetic radiation created by the electronic device itself. The purpose of this study is to develop the PRTD method by analyzing complex SRPs with decomposition and parameter extraction. The paper presents expressions for the oscillatory redistribution of energy, which describe the process of formation of the SRP. A new method of SRP decomposition is proposed, which makes it possible to obtain information about the main parameters of the emitters of the electronic assembly. An experiment was prepared and carried out to register and study the SRP of a composite electronic assembly in various operating modes. The values of the SRP parameters were obtained, indicating the presence of a malfunction in the electronic unit, or an incorrect mode of operation. These studies can be used in PRTD, in determining hardware failures, or degradation of element parameters in the early stages.

Key words: signal radio profile, correlation analysis, signal decomposition, parameter extraction, technical diagnostics

DOI: 10.31857/S0235009222030027

Cite: Boikov K. A. Radiosensornaya tekhnicheskaya diagnostika slozhnogo elektronnogo uzla [Radio-sensor technical diagnosis complex electronic assembly]. Sensornye sistemy [Sensory systems]. 2022. V. 36(3). P. 252–261 (in Russian). doi: 10.31857/S0235009222030027

References:

  • Basharin S.A. Teoreticheskiye osnovy elektrotekhniki [Theoretical foundations of electrical engineering]. M.: Akademiya, 2018. 192 p. (in Russian).
  • Boikov K.A. Modelirovaniye i analiz kolebatel’nogo pereraspredeleniya energii pri sobstvennykh elektromagnitnykh izlucheniyakh v klyuchevykh radioelektronnykh skhemakh na MOP-tranzistorakh [Modeling and analysis of oscillatory redistribution of energy with own electromagnetic radiation in key radio-electronic circuits on MOS transistors]. Zhurnal radioelektroniki [Journal of radio electronics], 2021. № 6. URL: https://doi.org/10.30898/1684-1719.2021.6.14. (in Russian).
  • Boikov K.A. Opredeleniye parametrov elektronnykh ustroystv metodom passivnoy radiosensornoy tekhnicheskoy diagnostici [Determination of the parameters of electronic devices by the method of passive radio sensor technical diagnostics]. Izvestiya vysshikh uchebnykh zavedeniy Rossii. Radioelektronika [News of higher educational institutions of Russia. Radioelectronics]. 2021. P. 63–70. https://doi.org/10.32603/1993-8985-2021-24-6-63-70 (in Russian).
  • Boikov K.A., Kostin M.S., Kulikov G.V. Radiosensornaya diagnostika tselostnosti signalov vnutriskhemnoy i periferiynoy arkhitektury mikroprotsessornykh ustroystv [Radiosensor diagnostics of signal integrity of in-circuit and peripheral architecture of microprocessor devices]. Rossiyskiy tekhnologicheskiy zhurnal [Russian technological journal]. 2021. V. 9 (4). P. 20–27. https://doi.org/10.32362/2500-316X-2021-9-4-20-27 (in Russian).
  • Boikov K.A., Kostin M.S. Metod radiosensornoy tekhnicheskoy diagnostiki mikroprotsessornykh ustroystv [Method of radio sensor technical diagnostics of microprocessor devices]. Novyye tekhnologii vysshey shkoly. Nauka, tekhnika, pedagogika [New technologies of higher education. Science, technology, pedagogy]. Moscow: Moskovskiy Politekh, 2021. P. 119–123 (in Russian).
  • Danilov D.Ye. Okonnoye preobrazovaniye Fur’ye pri vychislenii chastotno-vremennykh korrelyatsionnykh funktsiy [Windowed Fourier Transform in Computing Time-Frequency Correlation Functions]. Globus: Tekhnicheskiye nauki [Globus: Engineering Sciences]. 2020. № 4 (35). P. 20–25 (in Russian).
  • Yeremenko V.T. Tekhnicheskaya diagnostika elektronnykh sredstv [Technical diagnostics of electronic means]. Orel: FGBOU VPO “Gosuniversitet – UNPK”, 2012. 157 p. (in Russian).
  • Kubarev A.V., Lapsar’ A.P., Asyutikov A.A. Sintez modeli ob'yekta kriticheskoy informatsionnoy infrastruktury dlya bezopasnogo funktsionirovaniya tekhnicheskoy sistemy v usloviyakh destruktivnogo informatsionnogo vozdeystviya [Synthesis of a critical information infrastructure object model for the safe functioning of a technical system under destructive information impact]. Voprosy kiberbezopasnosti [Cybersecurity Issues]. 2020. № 6 (40). P. 48–56. https://doi.org/0.21681/2311-3456-2020-06-48-56. (in Russian).
  • Razevig V.D. Sistema skvoznogo proyektirovaniya elektronnykh ustroystv [System of end-to-end design of electronic devices] Design Lab 8.0. M.: Solon, 1999. 698 p. (in Russian).
  • Tkachenko F.A. Elektronnyye pribory i ustroystva [Electronic appliances and devices]. M.: Infra-M, 2018. 156 p. (in Russian).
  • Astakhov N.V., Bashkirov A.V., Zhurilova O.Ye., Makarov O.Yu. Chastotno-vremennoy analiz nestatsionarnykh signalov metodami veyvlet-preobrazovaniya i okonnogo preobrazovaniya Fur’ye [Time-Frequency Analysis of Nonstationary Signals by Wavelet Transform and Windowed Fourier Transform]. Radiotekhnika [Radio engineering]. 2019. T. 83. № 6 (8). P. 109–112 (in Russian).
  • Hu Y., Li W., Wang Y.F., Jin G., Jiang X. A JTAG-based management bus on backplane for modular instruments. J. Instrumentation. 2019. T. 14. № 9. P. T09002.
  • Masloboev A.V. Towards a theory of regional critical infrastructure security and resilience. Reliability & Quality of Complex Systems. 2020. No. 4 (32). P. 115–130. https://doi.org/10.21685/2307-4205-2020-4-13
  • Ravi Shankar Reddy G., Rameshwar Rao. OscillatoryPlus-Transient Signal Decomposition Using TQWT and MCA. J. Electron. Sci. Technol. 2019. V. 17. No. 2. P. 135–151.
  • Vostokov N.V., Revin M.V., Shashkin V.I. Microwave detector diodes based on InGaAs/AlGaAs/GaAs heterostructures. J. Applied Physics. 2020. V. 127. No. 4. P. 044503. https://doi.org/10.1063/1.5131737