• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Conceptual Model of Sensor System Ontology with Event Information Processing Method

© 2022 E. O. Cherskikh

St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences 199178 St. Petersburg, 14th Line, 39, Russia

Received 07 Oct 2021

The main purpose of this work is to analyze the existing methods of event processing of information both at the sensors level of sensor systems and at the level of the system as a whole. To achieve this goal, we considered sensors with an event-driven principle of operation and found that the most used are cameras and dynamic audio sensors. For other types of sensors that transmit data continuously, methods of event processing using ontologies that work with homogeneous and heterogeneous sensor systems are considered. Methods of separating events from the general stream of data coming from sensors and methods of creating complex events have been determined. The most popular way to isolate an event from a stream of data coming from sensors is to match the data received from the sensors with a sample. To create complex events, in most of the works considered, templates and specialized systems for processing complex events are used. The disadvantages of the considered methods are highlighted, a method is proposed to eliminate them by developing an editable ontology of a sensor system with the ability to consider the consequences of adding or removing sensor nodes.

Key words: sensory systems, events, event sensors, information processing

DOI: 10.31857/S0235009222020020

Cite: Cherskikh E. O. Kontseptualnaya model ontologii sensornoi sistemy s sobytiinym metodom obrabotki informatsii [Conceptual model of sensor system ontology with event information processing method]. Sensornye sistemy [Sensory systems]. 2022. V. 36(2). P. 124–135 (in Russian). doi: 10.31857/S0235009222020020

References:

  • Vatamaniuk I.V., Saveliev A.I. Mobil’naya robototekhnicheskaya platforma kak komponent kiberfizicheskogo intellektual’nogo prostranstva [Mobile robotic platform as a component of cyber-physical smart space]. Ekstremal’naya robototekhnika [Extreme Robotics]. 2017. V. 1 (1). P. 37–42 (in Russian)
  • Kuznetsov B.F., Buzunova M.U. Ontology of the outdoor lighting control system. AgroEurasia. 2018. P. 217–222.
  • Saveliev A.I., Khar’kov I.Y., Pavlyuk N.A., Karpov А.А. Mobil’naya avtonomnaya robototekhnicheskaya platforma s blochnoy izmenyayemoy strukturoy. [Mobile self-contained robotic platform with block variable structure]. Patent RF. №RU 2704048C1. 2019
  • Khaydarova R.R., Konev A.S., Lapaev M.V., Bondarenko I.B. Ontologicheskiy podkhod k avtomatizatsii protsessov kontrolya mikroklimata i bezopasnosti muzeynykh ob'yektov [Ontological approach to museum microclimate control process automation and security]. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2019. V. 19 (1). P. 118–125 (in Russian)
  • Angsuchotmetee C., Chbeir R., Cardinale Y. MSSN-Onto: An ontology-based approach for flexible event processing in Multimedia Sensor Networks. Future Generation Computer Systems, 2020. V. 108. P. 1140–1158. https://doi.org/10.1016/j.future.2018.01.044
  • Anumula J., Ceolini E., He Z., Huber A., Liu S.-C. An event-driven probabilistic model of sound source localization using cochlea spikes. IEEE International Symposium on Circuits and Systems (ISCAS). 2018. P. 1–5. https://doi.org/10.1109/iscas.2018.8351856
  • Belbachir A.N., Litzenberger M., Posch C., Schon P. Realtime vision using a smart sensor system. IEEE International Symposium on Industrial Electronics. 2007. P. 1968–1973. https://doi.org/10.1109/ISIE.2007.4374909
  • Belkaroui R., Bertaux A., Labbani O., Hugol-Gential C., Nicolle C. Towards events ontology based on data sensors network for viticulture domain. In Proceedings of the 8th International Conference on the Internet of Things. 2018. P. 1–7. https://doi.org/10.1145/3277593.3277619
  • Bhargavi R., Vaidehi V., Bhuvaneswari P.T.V., Balamuralidhar P., Chandra M.G. Complex event processing for object tracking and intrusion detection in wireless sensor networks. In 11th International Conference on Control Automation Robotics & Vision. 2010. P. 848–853. https://doi.org/10.1109/ICARCV.2010.5707288
  • Cao Q., Abdelzaher T., He T., Stankovic J. Towards optimal sleep scheduling in sensor networks for rare-event detection. In IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks. 2005. P. 20–27. https://doi.org/10.1109/IPSN.2005.1440887
  • Ceolini E., Frenkel C., Shrestha S.B., Taverni G., Khacef L., Payvand M., Donati E. Hand-gesture recognition based on EMG and event-based camera sensor fusion: A benchmark in neuromorphic computing. Frontiers in Neuroscience. 2020. V. 14. P. 637. https://doi.org/10.3389/fnins.2020.00637
  • Dan Brickley, Geo Ontology. 2003. URL: https:// www.w3.org/2003/01/geo/#development (accessed 20.10.2021)
  • Dan Brickley, Libby Miller. FOAF Vocabulary Specification 0.99. 2014. http://xmlns.com/foaf/spec/ URL: (accessed 20.10.2021)
  • Dunkel J. On complex event processing for sensor networks. International Symposium on Autonomous Decentralized Systems. 2009. V. 1–6. https://doi.org/10.1109/ISADS.2009.5207376
  • Ghosh R., Mishra A., Orchard G., Thako N.V. Real-time object recognition and orientation estimation using an event-based camera and CNN. IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings. 2014. P. 544–547. https://doi.org/10.1109/BioCAS.2014.6981783
  • Glover A., Bartolozzi C. Robust visual tracking with a freely-moving event camera. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. P. 3769–3776. https://doi.org/10.1109/IROS.2017.8206226
  • Herzog A., Jacobi D., Buchmann A. A3ME-an AgentBased middleware approach for mixed mode environments. The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. 2008. P. 191–196. https://doi.org/10.1109/UBICOMM.2008.78
  • Jerry R. Hobbs, Feng Pan, Time Ontology. 2017. URL: https://www.w3.org/TR/owl-time/ (accessed 20.10.2021)
  • Kasi M.K., Hinze A., Legg C., Jones S. SEPSen: Semantic event processing at the sensor nodes for energy efficient wireless sensor networks. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems. 2021. P. 119–122. https://doi.org/10.1145/2335484.2335497
  • Kim H., Leutenegger S., Davison A.J. Real-time 3D reconstruction and 6-DoF tracking with an event camera. In European Conference on Computer Vision. 2016. P. 349–364. https://doi.org/10.1007/978-3-319-46466-4_21
  • Lee W., Bailer W. Ontology for Media Resources 1.0 2012. https://www.w3.org/TR/mediaont-10/ (accessed 09.09.2021).
  • Lefort L., Henson C., Taylor K. Semantic Sensor Network XG Final Report. 2011. URL: http://www.w3.org/ 2005/Incubator/ssn/XGR-ssn-20110628/ (accessed 20.10.2021)
  • Li C.H., Delbruck T., Liu S.C. Real-time speaker identification using the AEREAR2 event-based silicon cochlea. IEEE international symposium on circuits and systems (ISCAS). 2012. P. 1159–1162. https://doi.org/10.1109/iscas.2012.6271438
  • Liu H., Moeys D.P., Das G., Neil D., Liu S.-C., Delbruck T. Combined frame- and event-based detection and tracking. IEEE International Symposium on Circuits and Systems (ISCAS). 2016. https://doi.org/10.1109/iscas.2016.7539103
  • Mazo M., Tabuada P. Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Transactions on Automatic Control. 2011. V. 56 (10). P. 2456–2461. https://doi.org/10.1109/TAC.2011.2164036
  • Mueggler E., Huber B., Scaramuzza D. Event-based, 6-DOF pose tracking for high-speed maneuvers. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014. P. 2761–2768. https://doi.org/10.1109/iros.2014.6942940
  • Mueggler E., Rebecq H., Gallego G., Delbruck T., Scaramuzza D. The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. The International Journal of Robotics Research. 2017. V. 36 (2). P. 142–149. https://doi.org/10.1177/0278364917691115
  • Nawaz F., Janjua N.K., Hussain O.K. PERCEPTUS: Predictive complex event processing and reasoning for IoT-enabled supply chain. Knowledge-Based Systems. 2019. V. 180. P. 133–146. https://doi.org/10.1016/j.knosys.2019.05.024
  • Ramesh B., Zhang S., Lee Z.W., Gao Z., Orchard G., Xiang C. Long-term object tracking with a moving event camera. In Proceedings of the 29th British Machine Vision Conference. 2018. P. 241.
  • Rebecq H., Horstschaefer T., Gallego G., Scaramuzza D. EVO: A Geometric approach to event-based 6-DOF parallel tracking and mapping in real time. IEEE Robotics and Automation Letters. 2017. V. 2 (2). P. 593–600. https://doi.org/10.1109/lra.2016.2645143
  • Rinne M., Blomqvist E., Keskisärkkä R., Nuutila E. Event processing in RDF. In Proceedings of the 4th International Conference on Ontology and Semantic Web Patterns. 2013. V. 118. P. 52–64.
  • Shaukat A., Shah K., Ullah I., Khan A., Inayat K. SmartOntoSensor: Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications. Journal of Sensors. 2017. P. 1–26. https://doi.org/10.1155/2017/8790198
  • Sokolova A., Konushin A. Human identification by gait from event-based camera. 16th International Conference on Machine Vision Applications (MVA). 2019. P. 1–6. https://doi.org/10.23919/MVA.2019.8758019
  • Somov A., Baranov A., Savkin A., Spirjakin D., Spirjakin A., Passerone R. Development of wireless sensor network for combustible gas monitoring. Sensors and Actuators A: Physical. 2011. V. 171 (2). P. 398–405. https://doi.org/10.1016/j.sna.2011.07.016
  • Taylor K., Leidinger L. Ontology-driven complex event processing in heterogeneous sensor networks. In Extended Semantic Web Conference. 2011. P. 285–299. https://doi.org/10.1007/978-3-642-21064-8_20
  • Thierry M. Ontology for Media Resources. 2012. URL: https://www.w3.org/ns/ma-ont# (accessed 20.10.2021)
  • Yves Raimond, Samer Abdallah. The Event Ontology. URL: http://motools.sourceforge.net/event/event.html (accessed 20.10.2021)