This article provides an review of the studies regarding the nature and properties of negative deflection of event-
related potentials (N2pc). This lateralized component usually appears at 180300 ms after the onset of the visual
stimulus and is calculated as the difference between the brain responses recorded in the contralateral parieto-occipital
sites of both hemispheres. Nowadays, N2pc serves as a reliable indicator of the involvement of the brain’s cognitive
resources in the process of identifying the location of a target. Initially, it was assumed that N2pc reflects the
process of suppression of irrelevant stimuli in the course of perception; but later other points of view on its
functional role arose, since the scientists got data on its connection with not only filtering, but also with the actual
processing of the target stimulus. In addition, the peculiarities of the emergence of this component make it possible to
study the mechanisms of the deployment of attention in both humans and animals. N2pc is now used also in the studies of
attention in people with various mental and physical disorders.
Key words:
attention, N2pc, event-related potentials (ERP), lateralized ERP, relevant stimulus, parallel search, sequential search,
filtering, target, distractor, attention selectivity
DOI: 10.31857/S0235009222020068
Cite:
Stoletniy A. S., Alekseeva D. S., Babenko V. V., Anokhina P. V., Yavna D. V.
Komponent n2pc v issledovaniyakh zritelnogo vnimaniya
[Component n2pc in studying visual attention].
Sensornye sistemy [Sensory systems].
2022.
V. 36(2).
P. 109–123 (in Russian). doi: 10.31857/S0235009222020068
References:
- Ponomarev V.A. Skrytye istochniki elektroentsefalogrammy i svyazannykh s sobytiyami potentsialov i ikh znachenie. Diss, dokt. biol. nauk [Latent sources of the electroencephalogram and event-related potentials and their significance. Dr. bio. Sci. diss.]. St. Petersburg. 2016. 676 p. (in Russian).
- Akyürek E.G., Meijerink S.K. The deployment of visual attention during temporal integration: An electrophysiological investigation. Psychophysiology. 2012. V. 49 (7). P. 885–898. https://doi.org/10.1111/j.1469-8986.2012.01380.x
- Ansorge U., Kiss M., Worschech F., Eimer M. The initial stage of visual selection is controlled by top-down task set: new ERP evidence. Attention, Perception, & Psychophysics. 2011. V. 73 (1). P. 113–122. https://doi.org/10.3758/s13414-010-0008-3
- Astle D.E., Scerif G., Kuo B.-C., Nobre A.C. Spatial selection of features within perceived and remembered objects. Frontiers in Human Neuroscience. 2009. V. 3.P. 6. https://doi.org/10.3389/neuro.09.006.2009
- Bachman M.D., Wang L., Gamble M.L., Woldorff M.G. Physical salience and value-driven salience operate through different neural mechanisms to enhance attentional selection. Journal of Neuroscience. 2020 V. 40 (28). P. 5455–5464. https://doi.org/10.1523/JNEUROSCI.1198-19.2020
- Barras C., Kerzel D. Nogo stimuli do not receive more attentional suppression or response inhibition than neutral stimuli: evidence from the N2pc, PD, and N2 components in a spatial cueing paradigm. Frontiers in Psychology. 2016. V. 7. P. 630. https://doi.org/10.3389/fpsyg.2016.00630
- Beaumont L.D., Brisson B., Lassonde M., Jolicoeur P. Long-term electrophysiological changes in athletes with a history of multiple concussions. Brain Injury. 2007. V. 21 (6). P. 631–644. https://doi.org/10.1080/02699050701426931
- Bichot N.P., Heard M.T., DeGennaro E.M., Desimone R. A Source for feature-based attention in the prefrontal cortex. Neuron. 2015. V. 88 (4). P. 832–844. https://doi.org/10.1016/j.neuron.2015.10.001
- Bichot N.P., Xu R., Ghadooshahy A., Williams M.L., Desimone R. The role of prefrontal cortex in the control of feature attention in area V4. Nature Communications. 2019. V. 10 (1). P. 5727. https://doi.org/10.1038/s41467-019-13761-7
- Bisley J.W., Mirpour K. The neural instantiation of a priority map. Current Opinion in Psychology. 2019 V. 29. P. 108–112. https://doi.org/10.1016/j.copsyc.2019.01.002
- Boehler C.N., Tsotsos J.K., Schoenfeld M.A., Heinze H.-J., Hopf J.-M. Neural mechanisms of surround attenuation and distractor competition in visual search. Journal of Neuroscience. 2011. V. 31 (14). P. 5213–5224. https://doi.org/10.1523/JNEUROSCI.6406-10.2011
- Bola M., Paź M., Doradzińska Ł., Nowicka A. The selfface captures attention without consciousness: Evidence from the N2pc ERP component analysis. Psychophysiology. 2021. V. 58 (4). P. 13759. https://doi.org/10.1111/psyp.13759
- Brisson B., Jolicœur P. The N2pc component and stimulus duration: NeuroReport. 2007. V. 18. (11). P. 1163–1166. https://doi.org/10.1097/WNR.0b013e3281e72d1b
- Brisson B., Robitaille N., Jolicoeur P. Stimulus intensity affects the latency but not the amplitude of the N2pc. Neuroreport. 2007. V. 18 (15). P. 1627–1630.
- Buodo G., Sarlo M., Munafò M. The neural correlates of attentional bias in blood phobia as revealed by the N2pc. Social Cognitive and Affective Neuroscience. 2010. V. 5 (1). P. 29–38. https://doi.org/10.1093/scan/nsp050
- Burra N., Barras C., Coll S.Y., Kerzel D. Electrophysiological evidence for attentional capture by irrelevant angry facial expressions. Biological Psychology. 2016. V. 120. P. 69–80. https://doi.org/10.1016/j.biopsycho.2016.08.008
- Burra N., Kerzel D. Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology. 2013. V. 50 (5). P. 422–430. https://doi.org/10.1111/psyp.12019
- Buschman T.J., Miller E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007. V. 315 (5820). P. 1860–1862. https://www.science.org/doi/abs/10.1126/science.1138071
- Cohen J.Y., Heitz R.P., Schall J.D., Woodman G.F. On the origin of event-related potentials idexing covert attentional selection during visual search. Journal of Neurophysiology. 2009. V. 102 (4). P. 2375–2386. https://doi.org/10.1152/jn.00680.2009
- Couperus J.W., Lydic K.O., Hollis J.E., Roy J.L., Lowe A.R., Bukach C.M., Reed C.L. Individual differences in working memory and the N2pc. Frontiers in Human Neuroscience. 2021. V. 15. P. 109. https://doi.org/10.3389/fnhum.2021.620413
- Eimer M. The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology. 1996. V. 99 (3). P. 225–234. https://doi.org/10.1016/0013-4694(96)95711-9
- Eimer M., Kiss M. Involuntary attentional capture is determined by task set: evidence from event-related brain potentials. Journal of Cognitive Neuroscience. 2008. V. 20 (8). P. 1423–1433. https://doi.org/10.1162/jocn.2008.20099
- Eimer M., Mazza V. Electrophysiological correlates of change detection. Psychophysiology. 2005. V. 42 (3). P. 328–342. https://doi.org/10.1111/j.1469-8986.2005.00285.x
- Gaspelin N., Luck S.J. Inhibition as a potential resolution to the attentional capture debate. Current opinion in psychology. 2019. V. 29. P. 12–18. https://doi.org/10.1016/j.copsyc.2018.10.013
- Girelli M., Luck S.J. Are the same attentional mechanisms used to detect visual search targets defined by color, orientation, and motion? Journal of Cognitive Neuroscience. 1997. V. 9 (2). P. 238–253. https://doi.org/10.1162/jocn.1997.9.2.238
- Gregoriou G.G., Gotts S.J., Desimone R. Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron. 2012. V. 73 (3). P. 581–594. https://doi.org/10.1016/j.neuron.2011.12.019
- Grubert A., Eimer M. The Speed of serial attention shifts in visual search: evidence from the N2pc component. Journal of Cognitive Neuroscience. 2016. V. 28 (2). P. 319–332. https://doi.org/10.1162/jocn_a_00898
- Heuer A., Schubö A. The focus of attention in visual working memory: protection of focused representations and its individual variation. PLOS ONE. 2016. V. 11. (4). P. e0154228. https://doi.org/10.1371/journal.pone.0154228
- Hickey C., Di Lollo V., McDonald J.J. Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 2009. V. 21 (4). P. 760–775. https://doi.org/10.1162/jocn.2009.21039
- Hilimire M.R., Corballis P.M. Event-related potentials reveal the effect of prior knowledge on competition for representation and attentional capture. Psychophysiology. 2014. V. 51 (1). P. 22–35. https://doi.org/10.1111/psyp.12154
- Hilimire M.R., Mounts J.R.W., Parks N.A., Corballis P.M. Competitive interaction degrades target selection: An ERP study. Psychophysiology. 2009. V. 46 (5). P. 1080–1089. https://doi.org/10.1111/j.1469-8986.2009.00846.x
- Hopf J.-M., Luck S.J., Boelmans K., Schoenfel, M.A., Boehler C.N., Rieger J., Heinze H.-J. The neural site of attention matches the spatial scale of perception. Journal of Neuroscience 2006. V. 26. (13). P. 3532–3540. https://doi.org/10.1523/JNEUROSCI.4510-05.2006
- Hopf J.-M., Luck S.J., Girelli M., Hagner T., Mangun G.R., Scheich H., Heinze H.-J. Neural sources of focused attention in visual search. Cerebral Cortex. 2000. V. 10 (12). P. 1233–1241. https://doi.org/10.1093/cercor/10.12.1233
- Hopf J.-M., Boelmans K., Schoenfeld A.M., Heinze H.-J., Luck S.J. How does attention attenuate target–distractor interference in vision? Evidence from magnetoencephalographic recordings. Cognitive Brain Research. 2002. V. 15. (1). P. 17–29. https://doi.org/10.1016/S0926-6410(02)00213-6
- Hyun J., Woodman G.F., Luck S.J. The role of attention in the binding of surface features to locations. Visual Cognition. 2009. V. 17 (1–2), P. 10–24. https://doi.org/10.1080/13506280802113894
- Ikeda K., Sugiura A., Hasegawa T. Fearful faces grab attention in the absence of late affective cortical responses. Psychophysiology. 2013. V. 50 (1). P. 60–69. https://doi.org/10.1111/j.1469-8986.2012.01478.x
- Kim M., Taylor M., Hoffman J. Emotional pictures automatically capture attention. Journal of Vision. 2017. V. 17 (10). P. 1292. https://doi.org/10.1167/17.10.1292
- Kiss M., Driver J., Eimer M. Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science. 2009 V. 20 (2). P. 245–251. https://doi.org/10.1111/j.1467-9280.2009.02281.x
- Kiss M., Van Velzen J., Eimer M. The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology. 2008. V. 45 (2). P. 240–249. https://doi.org/10.1111/j.1469-8986.2007.00611.x
- Krusemark E.A., Kiehl K.A., Newman J.P. Endogenous attention modulates early selective attention in psychopathy: An ERP investigation. Cognitive, Affective, & Behavioral Neuroscience. 2016. V. 16 (5). P. 779–788. https://doi.org/10.3758/s13415-016-0430-7
- Krzan F. Attentional guidance by the contents of working memory and the N2PC component. The Journal of Neurobehavioral Sciences. 2015. V. 2 (1). P. 21. https://doi.org/10.5455/JNBS.1429716677
- Kumar S., Soto D., Humphreys G.W. Electrophysiological evidence for attentional guidance by the contents of working memory. European Journal of Neuroscience. 2009. V. 30 (2). P. 307–317. https://doi.org/10.1111/j.1460-9568.2009.06805.x
- Li H., Zeigler-Hill V., Yang J., Jia L., Xiao X., Luo J., Zhang Q. Low self-esteem and the neural basis of attentional bias for social rejection cues: Evidence from the N2pc ERP component. Personality and Individual Differences. 2012. V. 53 (8). P. 947–951. https://doi.org/10.1016/j.paid.2012.03.004
- Lien M.-C., Croswaite K., Ruthruff E. Controlling spatial attention without central attentional resources: Evidence from event-related potentials. Visual Cognition. 2011. V. 19 (1). P. 37–78. https://doi.org/10.1080/13506285.2010.491643
- Liu X., Hildebrandt A., Recio G., Sommer W., Cai X., Wilhelm O. Individual differences in the speed of facial emotion recognition show little specificity but are strongly related with general mental speed: psychometric, neural and genetic Evidence. Frontiers in Behavioral Neuroscience. 2017. V. 11. P. 149. https://doi.org/10.3389/fnbeh.2017.00149
- Liu Y., Wang Y., Gozli D.G., Xiang Y.-T., Jackson T. Current status of the anger superiority hypothesis: A metaanalytic review of N2pc studies. Psychophysiology. 2021. V. 58 (1). P. e13700. https://doi.org/10.1111/psyp.13700
- Lorenzo-López L., Gutiérrez R., Moratti S., Maestú F., Cadaveira F., Amenedo E. Age-related occipito-temporal hypoactivation during visual search: Relationships between mN2pc sources and performance. Neuropsychologia. 2011. V. 49 (5). P. 858–865. https://doi.org/10.1016/j.neuropsychologia.2011.01.015
- Lorenzo-López Laura, Amenedo E., Cadaveira F. Feature processing during visual search in normal aging: Electrophysiological evidence. Neurobiology of Aging. 2008 V. 29 (7). P. 1101–1110. https://doi.org/10.1016/j.neurobiolaging.2007.02.007
- Luck S.J. The Operation of Attention–Millisecond by Millisecond–Over the First Half Second. In The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes. Cambridge, MA, US: MIT Press. 2006. P. 187–206.
- Luck S.J., Girelli M., McDermott M.T., Ford M.A. Bridging the gap between monkey neurophysiology and human perception: an ambiguity resolution theory of visual selective attention. Cognitive Psychology. 1997 V. 33 (1). P. 64–87. https://doi.org/10.1006/cogp.1997.0660
- Luck S.J., Hillyard S.A. Electrophysiological evidence for parallel and serial processing during visual search. Perception & Psychophysics. 1990. V. 48 (6). P. 603–617. https://doi.org/10.3758/bf03211606
- Luck S.J., Hillyard S.A. Electrophysiological correlates of feature analysis during visual search. Psychophysiology. 1994. V. 31 (3). P. 291–308.
- Luck S.J. Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. The Oxford handbook of eventrelated potential components. New York, NY, US: Oxford University Press. 2012. P. 329–360.
- Luck S.J., Fuller R.L., Braun E.L., Robinson B., Summerfelt A., Gold J.M. The speed of visual attention in schizophrenia: Electrophysiological and behavioral evidence. Schizophrenia Research. 2006. V. 85. (1). P. 174–195. https://doi.org/10.1016/j.schres.2006.03.040
- Luck S.J., Gaspelin N., Folk C.L., Remington R.W., Theeuwes J. Progress toward resolving the attentional capture debate. Visual Cognition. 2021. V. 29 (1). P. 1–21. https://doi.org/10.1080/13506285.2020.1848949
- Luck S.J., Hillyard S.A. Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance. 1994. V. 20 (5). P. 1000–1014.
- Luck S.J., Kappenman E.S. ERP components and selective attention. The Oxford handbook of event-related potential components. New York, NY, US: Oxford University Press. 2012. P. 295–327.
- Mazza V., Turatto M., Caramazza A. Attention selection, distractor suppression and N2pc. Cortex 2009a. V. 45 (7). P. 879–890. https://doi.org/10.1016/j.cortex.2008.10.009
- Mazza V., Turatto M., Caramazza A. An electrophysiological assessment of distractor suppression in visual search tasks. Psychophysiology. 2009b. V. 46 (4). P. 771–775. https://doi.org/10.1111/j.1469-8986.2009.00814.x
- Milner D., Goodale M. The Visual Brain in Action. Oxford. OUP Oxford. 2006. 458 p.
- Moon A., He C., Ditta A.S., Cheung O.S., Wu R. Rapid category selectivity for animals versus man-made objects: An N2pc study. International Journal of Psychophysiology. 2022. V. 171. P. 20–28. https://doi.org/10.1016/j.ijpsycho.2021.11.004
- Nako R., Wu R., Smith T.J., Eimer M. Item and categorybased attentional control during search for real-world objects: Can you find the pants among the pans? Journal of Experimental Psychology: Human Perception and Performance. 2014. V. 40. (4). P. 1283–1288. https://doi.org/10.1037/a0036885
- Ninomiya T., Sawamura H., Inoue K., Takada M. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. Journal of Neuroscience. 2012. V. 32 (20). P. 6851–6858. https://doi.org/10.1523/JNEUROSCI.6295-11.2012
- Papaioannou O., Luck S.J. Effects of eccentricity on the attention-related N2pc component of the event-related potential waveform. Psychophysiology. 2020. V. 57 (5). P. e13532. https://doi.org/10.1111/psyp.13532
- Pazo-Alvarez P., Cadaveira F., Amenedo E. MMN in the visual modality: a review. Biological Psychology. 2003. V. 63 (3). P. 199–236. https://doi.org/10.1016/S0301-0511(03)00049-8
- Popov T., Kastner S., Jensen O. FEF-controlled alpha delay activity precedes stimulus-induced gamma-band activity in visual cortex. Journal of Neuroscience. 2017. V. 37 (15). P. 4117–4127. https://doi.org/10.1523/JNEUROSCI.3015-16.2017
- Praamstra P., Plat F.M. Failed suppression of direct visuomotor activation in parkinson’s disease. Journal of Cognitive Neuroscience. 2001. V. 13 (1). P. 31–43. https://doi.org/10.1162/089892901564153
- Purcell B.A., Schall J.D., Woodman G.F. On the origin of event-related potentials indexing covert attentional selection during visual search: timing of selection by macaque frontal eye field and event-related potentials during pop-out search. Journal of Neurophysiology. 2013. V. 109 (2). P. 557–569. https://doi.org/10.1152/jn.00549.2012
- Reutter M., Hewig J., Wieser M.J., Osinsky R. The N2pc component reliably captures attentional bias in social anxiety. Psychophysiology. 2017. V. 54 (4). P. 519–527. https://doi.org/10.1111/psyp.12809
- Robitaille N., Jolicoeur P. Fundamental properties of the N2pc as an index of spatial attention: Effects of masking. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale. 2006. V. 60 (2). P. 101–111. https://doi.org/10.1037/cjep2006011
- Sato T. Effects of attention and stimulus interaction on visual responses of inferior temporal neurons in macaque. Journal of Neurophysiology. 1988. V. 60 (1). P. 344–364. https://doi.org/10.1152/jn.1988.60.1.344
- Sawaki R., Luck S.J. Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics. 2010. V. 72 (6). P. 1455–1470. https://doi.org/10.3758/APP.72.6.1455
- Schaffer S., Schubö A., Meinecke C. Electrophysiological correlates of target eccentricity in texture segmentation. International Journal of Psychophysiology. 2011. V. 80 (3). P. 198–209. https://doi.org/10.1016/j.ijpsycho.2011.03.003
- Schankin A., Wascher E. Unvoluntary attentional capture in change blindness. Psychophysiology. 2008 V. 45 (5). P. 742–750. https://doi.org/10.1111/j.1469-8986.2008.00685.x
- Schiff S., Mapelli D., Vallesi A., Orsato R., Gatta A., Umiltà C., Amodio P. Top-down and bottom-up processes in the extrastriate cortex of cirrhotic patients: An ERP study. Clinical Neurophysiology. 2006. V. 117 (8). P. 1728–1736. https://doi.org/10.1016/j.clinph.2006.04.020
- Shedden J.M., Nordgaard C.L. ERP time course of perceptual and post-perceptual mechanisms of spatial selection. Cognitive Brain Research. 2001. V. 11 (1). P. 59–75. https://doi.org/10.1016/S0926-6410(00)00064-1
- Tay D., Harms V., Hillyard S.A., McDonald J.J. Electrophysiological correlates of visual singleton detection. Psychophysiology. 2019. V. 56 (8). P. e13375. https://doi.org/10.1111/psyp.13375
- Theeuwes J. Top–down and bottom–up control of visual selection. Acta Psychologica. 2010. V. 135 (2). P. 77–99. https://doi.org/10.1016/j.actpsy.2010.02.006
- Thompson K.G., Biscoe K.L., Sato T.R. Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience. 2005. V. 25 (41). P. 9479–9487. https://doi.org/10.1523/JNEUROSCI.0741-05.2005
- Töllner T., Zehetleitner M., Gramann K., Müller H.J. Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PLOS ONE. 2011. V. 6 (1). P. e16276. https://doi.org/10.1371/journal.pone.0016276
- Westerberg J.A., Schall J.D. Neural mechanism of priming in visual search. Attention, Perception, & Psychophysics. 2021. V. 83 (2). P. 587–602. https://doi.org/10.3758/s13414-020-02118-8
- Westerberg J.A., Schall M.S., Maier A., Woodman G.F., Schall J.D. Laminar microcircuitry of visual cortex producing attention-associated electric fields. Elife. 2022. V. 11. P. e72139. https://doi.org/10.7554/eLife.72139
- Weymar M., Gerdes A.B.M., Löw A., Alpers G.W., Hamm A.O. Specific fear modulates attentional selectivity during visual search: electrophysiological insights from the N2pc. Psychophysiology. 2013. 50 (2). P. 139–148. https://doi.org/10.1111/psyp.12008
- Wolber M., Wascher E. Visual search strategies are indexed by event-related lateralizations of the EEG. Biological Psychology. 2003. 63 (1). P. 79–100. https://doi.org/10.1016/S0301-0511(03)00028-0
- Woodman G.F., Luck S.J. Electrophysiological measurement of rapid shifts of attention during visual search. Nature. 1999. V. 400 (6747). P. 867–869. https://doi.org/10.1038/23698
- Wu R., Pruitt Z., Runkle M., Scerif G., Aslin R.N. A neural signature of rapid category-based target selection as a function of intra-item perceptual similarity, despite inter-item dissimilarity. Attention, Perception, & Psychophysics. 2016. V. 78 (3). P. 749–760. https://doi.org/10.3758/s13414-015-1039-6
- Xu M., Wang Y., Nakanishi M., Wang Y.-T., Qi H., Jung T.-P., Ming D. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features. Journal of Neural Engineering. 2016. V. 13 (6). P. 066003. https://doi.org/10.1088/1741-2560/13/6/066003
- Young M.H., Heitz R., Purcell B., Schal J., Woodman G. Source localization of an event-related potential indexing covert shifts of attention in macaques. Journal of Vision. 2011. V. 11 (11). P. 194–194. https://doi.org/10.1167/11.11.194
- Yuan J., Zhang Q., Cui L. Social anxiety and attention to dynamic disgust facial expression: No more attention captured from evidence of N2pc. Neuroscience Letters. 2020. V. 736. P. 135269. https://doi.org/10.1016/j.neulet.2020.135269
- Zhao G., Liu Q., Zhang Y., Jiao J., Zhang Q., Sun H., Li H. The amplitude of N2pc reflects the physical disparity between target item and distracters. Neuroscience Letters. 2011. V. 491 (1). P. 68–72. https://doi.org/10.1016/j.neulet.2010.12.066
- Zhou H., Desimone R. Feature-based attention in the frontal eye field and area V4 during visual search. Neuron. 2011. V. 70 (6). P. 1205–1217. https://doi.org/10.1016/j.neuron.2011.04.032
- Zivony A., Allon A.S., Luria R., Lamy D. Dissociating between the N2pc and attentional shifting: An attentional blink study. Neuropsychologia. 2018. V. 121. P. 153–163. https://doi.org/10.1016/j.neuropsychologia.2018.11.003