In studies of peripheral visual acuity (VA), the main difficulties are caused by the necessity to divide attention
between the foveal fixation stimulus and the peripheral test target. One of the approaches to exclude the task of
central fixation is to create an artificial central scotoma by means of contact lens with implanted occluder. Applying
this approach, we have measured the peripheral VA in 3 participants in the range of eccentricities up to 60° by means of
two different optotypes – tumbling-E and modified 3-bar target on a specially constructed computerized perimetric setup.
It appeared that occlusion of the fixation stimulus per se did not lead to the anticipated increase in the VA, probably
because the effect of the instruction “to keep gaze direction straight ahead” is similar to that of the instruction to
fixate a visible foveal stimulus. More than that: contact lens with occluder (4-5 mm in diameter) could exert negative
effect, supposedly due to veiling the peripheral test target in the cases of uncontrolled involuntary decrease of the
pupil diameter leading to significant increase of the blind zone. In all participants, the peripheral VA values appeared
to be somewhat better for the modified 3-bar optotypes measuring “resolution acuity” than for the tumbling-E measuring
“recognition acuity”. The reliability of the data obtained for the peripheral VA was similar to that of the foveal data.
Interindividual variability of data was larger at lower eccentricities.
Key words:
peripheral vision, optotypes, visual acuity, resolution acuity, recognition acuity, contact lens with occluder, inter-
individual differences
DOI: 10.31857/S0235009222010024
Cite:
Belokopytov A. V., Rozhkova G. I., Gracheva M. A.
Otsenka perifericheskoi ostroty zreniya v razlichnykh usloviyakh testirovaniya
[Assessment of peripheral visual acuity in various conditions of testing].
Sensornye sistemy [Sensory systems].
2022.
V. 36(1).
P. 30–43 (in Russian). doi: 10.31857/S0235009222010024
References:
- Rozhkova G.I., Belokopytov A.V., Iomdina E.N. Sovremennye predstavleniya o spetsifike perifericheskogo zreniya cheloveka [Present view of the human peripheral vision specifics]. Sensornye sistemy [Sensory systems]. 2019. V. 33 (4). P. 305–330 (in Russian). https://doi.org/10.1134/S0235009219040073.
- Yarbus A.L., Rozhkova G.I. Osobennosti vospriyatiya ob”ektov na periferii polya zreniya [Features of perception of objects in the periphery of the visual field] Sensornye sistemy [Sensory Systems]. Leningrad, Nauka. 1977. P. 64–73 (in Russian).
- Almutleb E.S., Bradley A., Jedlicka J., Hassan S.E. Simulation of central scotoma using contact lenses with an opaque centre. Ophthalm. Physiol. Opt. 2018. V. 38 (1). P. 76–87. https://doi.org/10.1111/opo.12422
- Anderson R.S., Evans D.W., Thibos L.N. Effect of window size on detection acuity and resolution acuity for sinusoidal gratings in central and peripheral vision. J. Opt. Soc. Am. A. 1996. V. 13 (4). P. 697–706. https://doi.org/10.1364/josaa.13.000697
- Anderson R.S., Thibos L.N. Relationship between acuity for gratings and for tumbling-E letters in peripheral vision. J. Opt. Soc. Am. A. 1999a. V. 16 (10). P. 2321–2333. https://doi.org/10.1364/josaa.16.002321
- Anderson R.S., Thibos L.N. Sampling limits and critical bandwidth for letter discrimination in peripheral vision. J. Opt. Soc. Am. A. 1999b. V. 16 (10). P. 2334–2342. https://doi.org/10.1364/josaa.16.002334
- Augustin A., Sahel J.A., Bandello F., Dardennes R., Maurel F., Negrini C., Hieke K., Berdeaux G. Anxiety and depression prevalence rates in age-related macular degeneration. Invest. Ophthalmol. Vis Sci. 2007. V. 48. P. 1498–1503. https://doi.org/10.1167/iovs.06-0761
- Bernard J.B., Scherlen A.C., Castet E. Page mode reading with simulated scotomas: a modest effect of interline spacing on reading speed. Vision Res. 2007. V. 47. P. 3447–3459. https://doi.org/10.1016/j.visres.2007.10.005
- Butt T., Crossland M.D., West P., Orr S.W., Rubin G.S. Simulation contact lenses for AMD health state utility values in NICE appraisals: a different reality. Br. J. Ophthalmol. 2015. V. 99. P. 540–544. https://doi.org/10.1136/bjophthalmol-2014-305802
- Czoski-Murray C., Carlton J., Brazier J., Young T., Papo N.L., Kang H.K. Valuing condition-specific health states using simulation contact lenses. Value Health. 2009. V. 12. P. 793–799. https://doi.org/10.1111/j.1524-4733.2009.00527.x
- Foley-Fisher J.A., Murphy K.S. Simulation of a retinal scotoma by a stabilized retinal image. Ophthalmic Physiol Opt. 1987. V. 7. P. 495–498. https://doi.org/10.1111/j.1475-1313.1987.tb00785.x
- Hassell J.B., Lamoureux E.L., Keeffe J.E. Impact of age related macular degeneration on quality of life. Br. J. Ophthalmol. 2006. V. 90. P. 593–596. https://doi.org/10.1136/bjo.2005.086595
- Helmholtz H. von. Handhuch der Physiologischen Optik. Zweite umgearbeitete Auflage. Hamburg und Leipzig, Verlag von Leopold Voss. 1896. 1334 P.
- Holland D.A. Peripheral dynamic visual acuity under randomized tracking task difficulty, target velocities, and direction of target presentation. Ph. D. dissertation. (Virginia Polytechnic Institute and State University, 2000). URL: https://vtechworks.lib.vt.edu/bitstream/handle /10919/27297/DWIGHT.PDF?sequence=1&isAllowed=y. (дата обращения: 20.04.2021).
- Iomdina E.N., Selina O.M., Rozhkova G.I., Belokopytov A.V., Ershov E.I. Contact lens with implanted occluder as a tool for assessment of far peripheral vision in natural viewing conditions. Sensory systems. 2020. V. 34 (2). P. 100–106. https://doi.org/10.31857/S0235009220020043
- Johnson C.A., Leibowitz H.W. Practice effects for visual resolution in the periphery. Percept Psychophys. 1979. V. 25 (5). P. 439–442. https://doi.org/10.3758/bf03199854
- Jenerou A., Raghundan A., Bush S. Divided visual attention performance of ice hockey players with history of concussion. Vision Dev. & Rehab. 2018. V. 4 (3). P. 121–127. https://doi.org/10.31707/VDR2018.4.3.p121
- Jordan T.R., McGowan V.A., Paterson K.B. Reading with a filtered fovea: The influence of visual quality at the point of fixation during reading. Psychon. Bull. Rev. 2012. V. 19. P. 1078–1084. https://doi.org/10.3758/s13423-012-0307-x
- Lingnau A. Seeing without a fovea? Eye movements in reading and visual search with an artificial central scotoma. Ph.D. dissertation (Technischen Universitat Carolo-Wilhelmina zu Braunschweig, 2005). URL: https://d-nb.info/974049999/34. (дата обращения: 20.10.2021).
- Low F. The peripheral visual acuity of 100 subjects. Am. J. Physiol. 1943. V. 140 (1). P. 83–88. https://doi.org/10.1152/ajplegacy.1943.140.1.83
- Low F. The peripheral visual acuity of 100 subjects under scotopic conditions. Am. J. Physiol. 1946a. V. 146 (1). P. 21–25. https://doi.org/10.1152/ajplegacy.1946.146.1.21
- Low F. Some characteristics of peripheral visual performance. Am. J. Physiol. 1946b. V. 146(1). P. 573–584. https://doi.org/10.1152/ajplegacy.1946.146.4.573
- Low F. Peripheral visual acuity. AMA Arch. Ophthalmol. 1951. V. 45 (1). P. 80–99. https://doi.org/10.1001/archopht.1951.01700010083011
- Marmor D.J., Marmor M.F. Simulating vision with and without macular disease. Arch. Ophthalmol. 2010. V. 128. P. 117–125. https://doi.org/10.1001/archophthalmol
- Nau A. A contact lens model to produce reversible visual field loss in healthy subjects. Optometry. 2012. V. 83. P. 279–284. https://doi.org/10.1111/opo.12422
- Rayner K., Bertera J.H. Reading without a fovea. Science. 1979. V. 206. P. 468–469. https://doi.org/10.1126/science.504987
- Riggs L.A., Schick A.M. Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens. Vision Res. 1968. V. 8. P. 159–169. https://doi.org/10.1016/0042-6989(68)90004-7
- Simpson M.J. Mini-review: Far peripheral vision. Vision Res. 2017. V. 140. P. 96–105. https://doi.org/10.1016/j.visres.2017.08.001
- Simpson M.J. Scaling the retinal image of the wide-angle eye using the nodal point. Photonics. 2021. V. 8. P. 284. https://doi.org/10.3390/photonics8070284
- Sivak B., Sivak J.G., MacKenzie C.L. Contact lens design for lateralizing visual input. Neuropsychologia. 1985. V. 23. P. 801–883. https://doi.org/10.1016/0028-3932(85)90086-7
- Strasburger H., Rentschler I., Jüttner M. Peripheral vision and pattern recognition: a review. J. of Vision. 2011. V. 11 (13). P. 1–82. https://doi.org/10.1167/11.5.13
- Stewart E.E.M., Valsecchi M., Schütz A.C. A review of interactions between peripheral and foveal vision. J. of Vision. 2020. V. 20 (12). P. 1–35. https://doi.org/10.1167/jov.20.12.2
- Walonker A.F., Diddie K.R. Simulating decreased visual acuity with a contact lens system. Am. J. Ophthalmol. 1981. V. 92 (6). P. 863–864. https://doi.org/10.1016/s0002-9394(14)75645-4
- Watson A.B., Yellott J.I. A unified formula for light-adapted pupil size. J. of Vision. 2012 V. 12 (10). P. 1–16. https://doi.org/10.1167/12.10.12
- Wertheim T. (translated by Dunsky I.L. Original work published in 1894). Peripheral visual acuity. American Journal of Optometry and Physiological Optics. 1980. V. 57 (12). P. 915–924.
- Wertheim T. Über die indirekte Sehschärfe. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. 1894. V. 7. P. 172–187. URL: http://echo.mpiwg-ber-lin.mpg.de /MPIWG:YSKVNKH9 (дата обращения: 20.04.2021).
- Williams R.A., Brody B.L., Thomas R.G., Kaplan R.M., Brown S.I. The psychosocial impact of macular degeneration. Arch. Ophthalmol. 1998. V. 116. P. 514–520. https://doi.org/10.1001/archopht.116.4.514
- Wong W.L., Su X., Li X., Cheung C.M., Klein R., Cheng C.Y., Wong T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014. V. 2. P. 106–116. https://doi.org/10.1016/S2214-109X(13)70145-1