• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Downregulation of cockroach UV-sensitive visual pigment decreases masking effect of short wavelength illumination

© 2021 E. S. Novikova, I. Yu. Severina, I. L. Isavnina, M. I. Zhukovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Toreza 44, Russia

Received 22 Jul 2020

Dual function of light stimulating insect compound eyes is not only to bring the information on the shapes and colors of the surrounding but also on the light levels, regulating the daily and seasonal rhythms of physiological functions. Illumination of the American cockroach with bright light in the night phase of the diel cycle leads to the appearance of the masking effect, the most noticeable manifestation of which were the periods of complete immobility or freezing. Downregulation of the ultraviolet-sensitive visual pigment of a cockroach by RNA interference significantly reduced the masking effect, leading to a reduction in the duration of freezings. The observed changes in behavior were small in magnitude due to incomplete silencing of the UV-sensitive opsin.

Key words: visual pigment, RNA interference, behavior, masking, cockroach

DOI: 10.31857/S0235009221010066

Cite: Novikova E. S., Severina I. Yu., Isavnina I. L., Zhukovskaya M. I. Daunregulyatsiya ultrafiolet-chuvstvitelnogo zritelnogo pigmenta tarakana umenshaet effekt maskinga pri korotkovolnovom osveshchenii [Downregulation of cockroach uv-sensitive visual pigment decreases masking effect of short wavelength illumination]. Sensornye sistemy [Sensory systems]. 2021. V. 35(1). P. 22–29 (in Russian). doi: 10.31857/S0235009221010066

References:

  • Gribakin F.G. Mechanizmy fotorecepcii nacekomych [Mechanisms of insect photoreception]. L. Nauka, 1981. 213 p. (in Russian)
  • Novikova E.S., Zhukovskaya M.I. Oktopamin, gormon stressa nacekomych, izmenyet pattern gpyminga u tarakana Periplaneta Americana [Octopamine, the insect stress hormone, alters grooming pattern in the cockroach Periplaneta Americana]. J. Evol. Biochem. Physyol. 2015. V. 51. P. 160–162. https://doi.org/10.1134/S0022093015020118 (in Russian).
  • Novikova E.S., Zhukovskaya M.I. Reaktsiya zamiraniya pod deistviem yarkogo sveta u amerikanskogo tarakana [Bright light induced freezing behavior in American cockroach, Periplaneta americana] Sensornye sistemy [Sensory systems]. 2017. V. 31 (1). С. 44–50 (in Russian)
  • Bell W.J., Adiyodi K.G. The American Cockroach. London. Chapman & Hall, 1982. 538 p.
  • Butler R. The identification and mapping of spectral. cell types in the retina of Periplaneta americana. Z. Vergl. Physiol. 1971. V. 72. № 1. P. 67–80. https://doi.org/10.1007/BF00299204
  • Delcomyn F. Nickel chloride for intracellular staining of neurons in insects. J. Neurobiol. 1981. V. 12. № 6. P. 623–627. https://doi.org/10.1002/neu.480120610
  • French A.S., Meisner S., Liu H., Weckstrom M., Torkkeli P.H. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Front. Physiol. 2015. V. 6. P. 207. https://doi.org/10.3389/fphys.2015.00207
  • Greiner B. Adaptations for nocturnal vision in insect apposition eyes. Int. Rev. Cytol. 2006. V. 250. P. 1–46. https://doi.org/10.1016/S0074-7696(06)50001-4
  • Heimonen K., Immonen E.V., Frolov R.V., Salmela I., Juusola M., Vähäsöyrinki M., Weckström M. Signal coding in cockroach photoreceptors is tuned to dim environments. J. Neurophysiol. 2012. V. 108. P. 2641–2652. https://doi.org/10.1152/jn.00588.2012
  • Kelly K.M., Mote M.I. Avoidance of monochromatic light by the cockroach Periplaneta americana. J. Insect Physiol. 1990. V. 36. № 4. P. 287–291. https://doi.org/10.1016/0022-1910(90)90113-T
  • Laurent Salazar M.O., Deneubourg J.L. Sempo G. Information cascade ruling the fleeing behaviour of a gregarious insect. Anim. Behav. 2013. V. 85. № 6. P. 1271–1285. https://doi.org/10.1002/cne.902690202
  • Laurent Salazar M.O., Planas-Sitjà I., Deneubourg J.L., Sempo G. Collective resilience in a disturbed environment: stability of the activity rhythm and group personality in Periplaneta americana. Behav. Ecol. Sociobiol. 2015. V. 69. № 11. P. 1879–1896. https://doi.org/10.1007/s00265-015-2000-3
  • Leboulle G., Niggebrügge C., Roessler R., Briscoe A.D., Menzel R., de Ibarra N.H. Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. Insect Biochem. Mol. Biol. 2013. V. 43. № 10. P. 959–969. https://doi.org/10.1016/j.ibmb.2013.07.006
  • Mote M.I., Goldsmith T.H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J. Exp. Zool. 1970. V. 173. P. 137–145. https://doi.org/10.1002/jez.1401730203
  • Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol. Int. 1999. V. 16. № 4. P. 415–429. https://doi.org/10.3109/07420529908998717
  • Okada J., Toh Y. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zool. Sci. 1998. V. 15. № 6. P. 831–835. https://doi.org/10.2108/zsj.15.831
  • Page T.L. Transplantation of the cockroach circadian pacemaker. Science. 1982. V. 216. № 4541. P. 73–75. https://doi.org/10.1126/science.216.4541.73
  • Penzlin H., Stölzner W. Frontal ganglion and water balance in Periplaneta americana L. Experientia. 1971. V. 27. № 4. P. 390–391. https://doi.org/10.1007/BF02137265
  • Saari P., Immonen E.V., French A.S., Torkkeli P.H., Liu H., Heimonen K., Frolov, R.V. Electrical interactions between photoreceptors in the compound eye of Periplaneta americana. J. Exp. Biol. 2018. V. 221. https://doi.org/10.1242/jeb.189340
  • Song B.M., Lee C.H. Toward a mechanistic understanding of color vision in insects. Frontiers in neural circuits. 2018. V. 12. P. 16. https://doi.org/10.3389/fncir.2018.00016
  • Toh Y., Yokohari F. Postembryonic development of the dorsal. ocellus of the American cockroach. J. Comp. Neurol. 1988. V. 269. № 2. P. 157–167. https://doi.org/10.1002/cne.902690202
  • Yamaguchi S., Wolf R., Desplan C., Heisenberg M. Motion vision is independent of color in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2008. V. 105. № 12. P. 4910–4915. https://doi.org/10.1073/pnas.0711484105
  • Zhang X., Pengsakul T., Tukayo M., Yu L., Fang W., Luo D. Host-location behavior of the tea green leafhopper Empoasca vitis Göthe (Hemiptera: Cicadellidae): olfactory and visual effects on their orientation. Bull. Entomol. Res. 2018. V. 108. № 4. P. 423–433. https://doi.org/10.1017/S0007485317000931
  • Zhukovskaya M.I. Grooming behavior in American cockroach is affected by novelty and odor. The Scientific World Journal. 2014. 6 p. https://doi.org/10.1155/2014/329514
  • Zhukovskaya M.I., Novikova E.S., Saari P., Frolov R.V. Behavioral responses to visual overstimulation in the cockroach Periplaneta americana L. J. Comp. Physiol. A. 2017. V. 203. P. 1007–1015. DOI: 9-017-1210-8 https://doi.org/10.1007/s0035