• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Visual neurons of fish tectum opticum, their extracellular spike activity and search for their adequate stimulation

© 2021 A. A. Zaichikova, I. Damjanovic, P. V. Maximov, A. T. Aliper, E. M. Maximova

Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Bolshoy Karetny per., 19, Russia

Received 02 Nov 2020

Tectum opticum (TO) of different animals is known to guide their external attention that is crucial for the organization of behavioral responses. In fish, TO is a main primary visual center. Vast majority of retinal ganglion cells (98%) (GCs) send their signals there, as inputs to tectal neurons proper. The responses of the retinal GCs (from the axonal terminals) and the tectal neurons (TN) (probably from the cell bodies) were recorded extracellularly in the TO of a living adult fish (Carassius auratus gibelio). Four types of directional selective TN (DS TN) were described at different (certain) depths in TO. In addition to them, rare sporadic neuronal spikes were recorded simultaneously with the responses of caudo-rostral DS GCs, i.e. rather superficially. These responses occur during stimulation in any place of a large area, are not directional selective and presumably belong to superficial inhibitory neurons (SIN) situated in stratum opticum of TO. To evoke the regular responses to repeat stimulation we tried a lot of stimuli configurations. At last we succeed. We compare our electrophysiological results with ones obtained by many authors with diverse methods on zebrafish larvae. According to our results we identify DS TN with glutamatergic periventricular tectal interneurons, and “SIN” – with superficial inhibitory GABA-ergic interneurons, that participate in selection of the main (popout) object in the visual field and drawing attention to it.

Key words: tectum opticum, fish, vision, retina, directional selectivity, tectal neurons

DOI: 10.31857/S0235009221010108

Cite: Zaichikova A. A., Damjanovic I., Maximov P. V., Aliper A. T., Maximova E. M. Neirony tectum opticum ryb, elektricheskaya aktivnost i podbor adekvatnoi stimulyatsii [Visual neurons of fish tectum opticum, their extracellular spike activity and search for their adequate stimulation]. Sensornye sistemy [Sensory systems]. 2021. V. 35(1). P. 11–21 (in Russian). doi: 10.31857/S0235009221010108

References:

  • Maximov V.V., Maximova E.M., Maximov P.V. Classification of direction-selective units recorded in the goldfish tectum. Sensornye Sistemy (Sensory sistems). 2005. V. 19. P. 322–335 (in Russian)
  • Maximov V.V., Maximova E.M., Maximov P.V. Classification of orientation-selective units recorded in the gold fish tectum. Sensornye Sistemy (Sensory sistems). 2009. V. 23. P. 13–23 (in Russian)
  • Aliper A.T., Zaichikova A.A., Damjanović I., Maximov P.V., Kasparson A.A., Gačić Z., Maximova E.M. Updated functional segregation of retinal ganglion cell projections in the tectum of a cyprinid fish – further elaboration based on microelectrode recordings. Fish Physiol. Biochem. 2019. V. 45. № 2. P. 773–792.
  • Barker A.J., Baier H. SINs and SOMs: neural microcircuits for size tuning in the zebrafish and mouse visual pathway. Front. Neural Circuits. 2013. V. 7. P. 89.
  • Barker A.J., Baier H. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 2015. V. 25. № 21. P. 2804–2814.
  • Ben-Tov M., Donchin O., Ben-Shahar O., Segev R. Pop-out in visual search of moving targets in the archer fish. Nat. Commun. 2015. V. 6. № 1. P. 1–11.
  • Bene F. Del, Wyart C., Robles E., Tran A., Looger L., Scott E.K., Isacoff E.Y., Baier H. Filtering of visual information in the tectum by an identified neural circuit. Science. 2010. V. 330. № 6004. P. 669–673.
  • Damjanović I., Maximova E.M., Maximov V.V. On the organization of receptive fields of orientation-selective units recorded in the fish tectum. J. Integr. Neurosci. 2009. V. 8. P. 323–344.
  • Damjanović I., Maximov P., Aliper A., Zaichikova A., Gačić Z., Maximova E. Putative targets of directionselective retinal ganglion cells in the tectum opticum of cyprinid fish. Brain Research. 2019. V. 1708. 1 April 2019. P. 20–26.
  • Gabriel J.P., Trivedi C.A., Maurer C.M., Ryu S., Bollmann J.H. Layer-Specific Targeting of Direction-Selective Neurons in the Zebrafish Optic Tectum. Neuron. 2012. V. 76. № 6. P. 1147–1160.
  • Gesteland R.C., Lettvin J.Y., Howland B., Howland B., Pitts W.H. Comments on Microelectrodes. Proc. IRE. 1959. V. 47. № 11. P. 1856–1862.
  • Grama A., Engert F. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition. Front. Neural Circuits. 2012. V. 6. № September. P. 59.
  • Hunter P.R., Lowe A.S., Thompson I.D., Meyer M.P. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J. Neurosci. 2013a. V. 33. № 35. P. 13940–13945.
  • Kardamakis A.A., Saitoh K., Grillner S. Tectal microcircuit generating visual selection commands on gaze–controlling neurons. Proc. Natl. Acad. Sci. 2015. V. 112. № 15. P. E1956–E1965.
  • Kinoshita M., Ito E. Roles of periventricular neurons in retinotectal transmission in the optic tectum. Prog. Neurobiol. 2006. V. 79. № 2. P. 112–121.
  • Lazareviċ L., Rogač L. and Rakiċ L. Citoarchitetonic analysis of tectum opticum in Serranus scriba. Iugoslavica Physiologica et Pharmacologica Acta. 1998. V. 34 (2). P. 335–341.
  • Maximov V.V., Maximova E.M., Maximov P.V. Direction selectivity in the goldfish tectum revisited. Ann. N. Y. Acad Sci. 2005. V. 1048. P. 198–205.
  • Maximova E., Pushchin I., Maximov P., Maximov V. Presynaptic and postsynaptic single–unit responses in the goldfish tectum as revealed by a reversible synaptic transmission blocker. J. Integr. Neurosci. 2012. V. 11. № 2. P. 183–191.
  • Nevin L.M., Robles E., Baier H., Scott E.K. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol. 2010. V. 8. № 1. P. 126.
  • Nikolaou N., Lowe A.S., Walker A.S., Abbas F., Hunter P.R., Thompson I.D., Meyer M.P. Parametric Functional Maps of Visual Inputs to the Tectum. Neuron. 2012. V. 76. № 2. P. 317–324.
  • Nikolaou N., Meyer M.P. Lamination Speeds the Functional Development of Visual Circuits. Neuron. 2015. V. 88. № 5. P. 999–1013.
  • Northmore D.P.M. The Optic Tectum. In Encyclopedia of Fish Physiology: From Genome to Environment. Под ред. Farrell A.P. Elsevier. 2011. P. 131–142.
  • Preuss S.J., Trivedi C.A., Berg-Maurer C.M. Vom, Ryu S., Bollmann J.H. Classification of object size in retinotectal microcircuits. Curr. Biol. 2014. V. 24. № 20. P. 2376–2385.
  • Robles E., Filosa A., Baier H. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J. Neurosci. 2013. V. 33. № 11. P. 5027–5039.
  • Robles E., Smith S.J., Baier H. Characterization of genetically targeted neuron types in the zebrafish optic tectum. Front. Neural Circuits. 2011. V. 5. № FEB.
  • Walker A.S., Burrone J., Meyer M.P. Functional imaging in the zebrafish retinotectal system using RGECO. Front. Neural Circuits. 2013. V. 7. P. 34.
  • Yin C., Li X., Du J. Optic tectal superficial interneurons detect motion in larval zebrafish. Protein Cell. 2019. V. 10. P. 238–248.