• 2023 (Vol.37)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

On optimal visualization of images on photoemission displays with significant dispersion of efficiency of individual elements

© 2020 O. A. Basova, A. S. Grigorev, A. V. Savchik, D. S. Sidorchuk, D. P. Nikolaev

Institute for Information Transmission Problems, Russian Academy of Sciences 127051 Moscow, Bolshoy Karetny per. 19, Russia
Moscow Institute of Physics and Technology (National Research University), 141701 Moscow Region, Dolgoprudny, Institutsky pereulok 9, Russia

Received 12 Sep 2019

In this paper we propose a method based on the properties of human spatial color perception for calibration of self- luminous display with significant non-uniformity of the peak brightness. The method maximizes the perceived image uniformity. Compensation of the image non-uniformity is based on minimizing the S-CIELAB distance between the target and the displayed image. This optimization problem was solved using descent methods similar to those used in the training of convolutional neural networks. The application of this method is promising for use in large format LED displays.

Key words: photoemission display, display calibration, display non-uniformity compensation, human visual system model, S-CIELAB

DOI: 10.31857/S0235009220010047

Cite: Basova O. A., Grigorev A. S., Savchik A. V., Sidorchuk D. S., Nikolaev D. P. Ob optimalnoi vizualizatsii izobrazhenii na fotoemissionnykh displeyakh so znachitelnoi dispersiei effektivnosti otdelnykh elementov [On optimal visualization of images on photoemission displays with significant dispersion of efficiency of individual elements]. Sensornye sistemy [Sensory systems]. 2020. V. 34(1). P. 25-31 (in Russian). doi: 10.31857/S0235009220010047


  • LG, Dopustimoe kolichestvo defektnyih tochek LCD, OLED moduley televizorov i monitorov [Acceptable number of defective pixels LCD, OLED modules of TVs and displays]. 2017. URL: www.lg.com/ru/support/product-help/CT20206007-1347276421471-others (in Russian).
  • Arnold A.D., Cok R.S. OLED display with aging compensation: Patent No. 6995519 USA. 2006.
  • Bern M., Eppstein D. Optimized color gamuts for tiled displays. Proceedings of the nineteenth annual symposium on Computational geometry. 2003. P. 274–281.
  • CIE International Commission on Illumination. Recommendations on Uniform Color Spaces, Color-Difference Equations, and Metric Color Terms. Color Research & Application. 1977. V. 2 (1). P. 5–6. DOI: 10.1002/j.1520-6378.1977.tb00102.x.
  • Ginesu G., Massidda F., Giusto D.D. A multi-factors approach for image quality assessment based on a human visual system model. Signal Processing: Image Communication. 2006. V. 21 (4). P. 316–333. DOI: 10.1016/j.image.2005.11.005.
  • Harris S. Color and Luminance Uniformity Correction for LED Video Screens. 2007. URL: www.signindustry.com/led/articles/2007-10-15-SH-PulseWidthModulationPWMCorrectionOfLEDDisplays. php3.
  • Kingma D.P., Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014.
  • Konovalenko I., Smagina A., Kokhan V., Nikolaev D. ProLab: perceptually uniform projective colour coordinates system. ICVS. 2019. 70 с.
  • Luo M.R., Cui G., Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Research & Application. 2001. V. 26 (5). P. 340–350. DOI: 10.1002/col.1049.
  • Mokrzycki W.S., Tatol M. Colour difference ΔE – A survey. Machine Graphics and Vision. 2011. V. 20 (4). P. 383–411.
  • Smith T., Guild J. The CIE colorimetric standards and their use. Transactions of the optical society. 1931. V. 33 (3). P. 73. DOI: 10.1088/1475-4878/33/3/301.
  • Stone M.C. Color and brightness appearance issues in tiled displays. IEEE Computer Graphics and Applications. 2001. V. 21 (5). P. 58–66.
  • Uttwani P.K., Villari B.C., Unni K.N., Singh R., Awasthi A. Detection of physical defects in full color passive-matrix OLED display by image driving techniques. Journal of Display Technology. 2012. V. 8 (3). P. 154–161. DOI: 10.1109/jdt.2011.2168805.
  • Wuerger S.M., Watson A.B., Ahumada Jr A.J. Towards a spatio-chromatic standard observer for detection. Human Vision and Electronic Imaging VII. 2002. V. 4662. P. 159–172. DOI: 10.1117/12.469512.
  • Zhang X., Wandell B.A. A spatial extension of CIELAB for digital color image reproduction. SID international symposium digest of technical papers. 1996. V. 27. P. 731–734.