• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Spatial and temporal integration in the chain of the transduction of olfactory signals

© 2017 V. M. Ganshin, E. P. Zinkevich

Severtzov Institute of Ecology and Evolution, RAS 119071 Moscow, Leninsky Prospekt, 33

Received 17 Jan 2017

Fundamental characteristics of olfactory perception (speed, sensitivity, and selectivity) were assessed in terms of the hypothesized mechanism of competitive interaction between the receptor proteins and olfactory substances. For higher fatty acids (palmitinic and myristinic) contributing to individual human odor, achievement of the threshold as low as 10–17 M during 0.16 sec and recovery during 0.1 sec is explained. The contractive apparatus of the olfactory cilia is supposed to be a linear integrator of uctuation of Са2+-currents, in conjunction with mechano-chemical transmission of the smoothed signal to Сl–-channels responsible for the origin of the generator potential. Together with the mechanism of two-stage concentration of the substance in a sensory membrane, contribution of odorant-binding proteins, and the algorithms of statistical processing of the transduced signals in the ciliar structure, the competitive model explains the sensitivity, speed, and selectivity of olfactory perception by a single supra-molecular complex.

Key words: odorant-binding protein, G-protein, cАМP-dependent cation channels, Са2+-manageable chlorine channels, potassium-sodium- chloride (К+–Na+–2Cl–) co-transport, olfactory cilia, olfactory sensitivity, selectivity, speed

Cite: Ganshin V. M., Zinkevich E. P. Prostranstvennoe i vremennóe integrirovanie v tsepi transduktsii obonyatelnykh signalov [Spatial and temporal integration in the chain of the transduction of olfactory signals]. Sensornye sistemy [Sensory systems]. 2017. V. 31(3). P. 237-246 (in Russian).

References:

  • Ganshin V.M., Zinkevich E. P. Possible role of competitive relations in the model of the olfactory receptor // Sensory Systems. 2012. V. 26. No 4. P. 331–341 [in Russian]
  • Ganshin V.M., Zinkevich E. P. The mechanisms of olfactory transduction of signals: the possible role of the contractile apparatus of the olfactory cilia // Sensory Systems. 2017. V. 31. No 1. P. 57–69 [in Russian]
  • Duhovich F.S., Darhovsky M.B., Gorbatova E.N., Kurochkin V.K. // Molecular recognition. Moscow. Medicine, 2004. P. 39–41 [in Russian]
  • Duhovich F.S., Darhovskii M.B., Gorbatova E.N., Kurochkin V. K. The relationship between the dissociation constant and lifetime of the complexes of physiologically active substances with receptors and enzymes // Chemical.-farm. J. 2002. V. 36. No 5. P. 26– 32 [in Russian]
  • Ilyinsky O. V. General physiology of receptors // Physiology of sensory systems. 1972. Part 2. P. 515–549 [in Russian]
  • Kremer N. S. Theory of Probability and Mathematical Statistics. M. 2007. 551 p. [in Russian]
  • Lyakhovich V.V., Tsyrlov I. B. The induction of enzymes of xenobiotic metabolism. Novosibirsk: Science, Siberian Branch. 1981. 240 p. [in Russian]
  • Minor A. V. The structural organization of the peripheral parts of the olfactory analyzer and olfactory bulb // Physiology of sensory systems. Part 2. 1972. P. 515–549 [in Russian]
  • Minor A.V., Kayssling K.-E. “Dark” noise in the insect olfactory cells assessment of the frequency of spontaneous activation of receptors feromon // Sensory Systems. 2000. T. 20. No 4. P. 325–327 [in Russian]
  • Poltorak O. M. Chemical and biochemical mechanisms of smell and strengthening primary olfactory signals // SOJ. Biology. Physiology. 1996. No 11. P. 13–19 [in Russian]
  • Sulimov K.T., Starovoytov V.I., Moiseyeva T.F., Poletaeva I.I., Zinkevich E. P. Olfactory distinction by dogs three mixtures of higher fatty acids for their quantitative composition // Sensory Systems. 1995. V. 9. No 2–3. P. 43–49 [in Russian]
  • Bhandawat V., Reisert J., Yau K.-W. Elementary response of olfactory receptor neurons to odorants // Science. 2005. V. 308. P. 1931–1934.
  • Bianchet M. A., Bains G., Pelosi P., Pevsner J., Snyder S.H., Monaco H.L., Amzel L.M. The three-dimensional structure of bovine odorant binding protein and its mechanism of odor recognition // Nature. Structural Biology. 1996. V. 3. P. 934–939.
  • Graham S.M., Prestwich G.D. Synthesis and inhibitory properties of pheromone analogues for the epoxide hydrolase of the gypsy moth // J. Org. Chem. 1994. V. 59. P. 2956–2966.
  • Grosmaitre X., Vassalli A., Mombaerts P., Shepherd G.M., Ma M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 1970–1975.
  • Hadley W.M., Dahl A.R. Cytochrome P-450 dependent monooxygenase activity in rat nasal epithelial membranes // Toxicol. Lett. 1982. V. 10. P. 417–422.
  • Kleene S. J. The Electrochemical basis of odor transduction in vertebrate olfactory cilia // Chem. Senses. 2008. V. 33. P. 839–859.
  • Leinders-Zufall T., Greer C.A., Shepherd G.M., Zufall F. Imaging odorinduced calcium transients in single olfactory cilia: Speci city of activation and role in transduction // J. Neurosci. 1998. V. 18. P. 5630–5639.
  • Millery J., Briand L., Bezirard V., Blon F., Fenech C., Richard-Parpaillon L., Quennedey B., Pernollet J.C., Gascuel J. Speci c expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus // European J. Neuroscience. 2005. No 22. P. 1389–1399.
  • Miпor А.V., Persaud К.С. Flexible imaging of brain activity bу means of а high speed CCD саmега and voltage-sensitive dyes: optimization of temporal and spatial resolution // Chemical Senses. 1995. V. 20. No 1. Р. 166.
  • Pelosi P. Odorant-binding proteins // Crit. Rev. Biochem. Mol. Biol. 1994. V. 29. No 3. Р. 199–228.
  • Реrsаud К.С., Miпor А.V. High resolution optical recording of the frog olfactory bulb respol1ses to odour stimulation // Chemical Senses. 1995. V. 20. No 1. Р. 97.
  • Pevsner J., Tri letti R.R., Strittmatter S.M., Snyder S.H. Isolation and characterization of an olfactory receptor protein for odorant pyrazines // Proc. National Acad. Sci. USA. 1985. V. 82. P. 3050–3054.
  • Reed C.J., Lock E.A., De Matteis S. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein // Biochem J. 1988. V. 253. No 2. P. 569–576.
  • Reisert J. Origin of basal activity in mammalian olfactory receptor neurons // JGP. 2010. V. 136. No 5. P. 529–540.
  • Takeuchi H., Kurahashi T. Distribution, ampli cation, and summation of cyclic nucleotide sensitivities within single olfactory sensory cilia // J. Neurosci. 2008. V. 28. P. 766–775.
  • Thiebaud N., Veloso Da Silva S., Jakob I., Sicard G., Chevalier J., Menetrier F., Berdeaux O., Artur Y., Heydel J.M., Le Bon A.M. Odorant metabolism catalyzed by olfactory mucosal enzymes in uences peripheral olfactory responses in rats // PLoS One. 2013. V. 8(3): e59547.
  • Zarzo M. The sense of smell: molecular basis of odorant recognition // Biol. Rev. 2007. V. 82. P. 455–479.
  • Yoshii F., Hirono S. Construction of a quantitative three-dimensional model for odor quality using comparative molecular eld analysis (CoMFA) // Chemical Senses. 1996. V. 21. P. 201–210.