• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Development of functional impairments in the lateral geniculate nucleus of di erent hemispheres following early monocular deprivation

© 2017 S. V. Alekseenko, P. Yu. Shkorbatova

Pavlov Institute of Physiology RAS 199034 St-Petersburg, Makarov emb., 6

Received 28 Feb 2017

To study the development of impairments evoked by monocular deprivation, the functional activity in eye-specific layers of dorsal lateral geniculate nucleus (LGN) in kittens at 1–5 months of age was evaluated. Histochemical staining for cytochrome oxidase – a mitochondrial enzyme involved in energy production – was used to estimate functional activity in LGN. Using images of stained LGN sections the optical density in the layers of intact and deprived eyes was measured and the contrast K between them was calculated. For the rst time a relative increase of K-values in relation to norm levels was found in kittens at the age of two months in the hemisphere ipsilateral to deprived eye and at the age of three months in the opposite hemisphere. At the age of ve months K-values in both hemispheres were not di erent. Obtained changes of K were not dependent on eccentricity in the visual eld. Revealed data show that in LGN the critical period of plasticity for uncrossed pathways starts earlier than for crossed.

Key words: cat, monocular deprivation, lateral geniculate nucleus, cytochrome oxidase

Cite: Alekseenko S. V., Shkorbatova P. Yu. Razvitie funktsionalnykh narushenii v naruzhnom kolenchatom tele raznykh polusharii pri rannei monokulyarnoi deprivatsii [Development of functional impairments in the lateral geniculate nucleus of di erent hemispheres following early monocular deprivation]. Sensornye sistemy [Sensory systems]. 2017. V. 31(3). P. 183-190 (in Russian).

References:

  • Alekseenko S.V., Toporova S.N., Shkorbatova P.Y. Neuronal connections of ocular dominance columns in the cortex of monocularly deprived cats // Rus. J. Physiology. 2007. V. 93. No 9. P. 1024–1032 [in Russian]
  • Alekseenko S.V., Toporova S.N., Shkorbatova P. Y. Size of cells providing interhemispheric and intrahemispheric connections in the visual cortex of binocular vision impaired cats // Rus. J. Physiology. 2011. V. 97. No 3. P. 302–307 [in Russian]
  • Alekseenko S.V., Toporova S.N., Shkorbatova P.Y., Solnushkin S. D. The influence of strabismus and monocular deprivation on the structure of interhemispheric connections in visual cortical areas of the cat. //Rus. J. Physiology. 2012. V. 98. No 4. P. 479–487 [in Russian]
  • Merkul’eva N.S., Makarov F. N. Some aspects of the modular organization of the primary visual cortex of the cat: patterns of cytochrome oxidase activity // Morfologia. 2007. V. 132. No 5. P. 28–33 [in Russian]
  • Rozhkova G.I., Matveev S.G. Vision of children: Problems of assessment and functional correction. M. Nauka, 2007. 280 p. [in Russian]
  • Supin A. Ya. Vision neurophysiology of mammals. M. Nauka, 1981. 252 p. [in Russian]
  • Hubel D. Eye, brain, vision. M. Mir, 1990. 239 p. [in Russian]
  • Tchichman V.N., Solnushkin S.D., Alekseenko S.V. Computer analysis of brain visual cortex slices images // Materials of 7th Internat. interdisc. Congress “Neuroscience for medicine and psychology” / eds. Loseva E.V., Loginova N.A. M.: Maks-Press, 2011. P. 454 [in Russian]
  • Antonini A., Fagiolini M., Stryker M.P. Anatomical correlates of functional plasticity in mouse visual cortex // J. Neurosci. 1999. V. 19. No 11. P. 4388–4406.
  • Bisti S., Carmignoto G. Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways // Vision Res. 1986. V. 26. No 6. P. 875–884.
  • Blakemore C. The conditions required for the maintenance of binocularity in the kitten’s visual cortex // J. Physiol. 1976. V. 261. No 2. P. 423–444.
  • Crair M.C., Gillespie D.C., Stryker M. P. The role of visual experience in the development of columns in cat visual cortex // Science. 1998. V. 279. No 5350. P. 566–5670.
  • Crair M.C., Horton J.C., Antonini A., Stryker M. P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age // J. Comp. Neurol. 2001. V. 430. No 2. P. 235–249.
  • Daw N.W. Visual development. 2nd edition. Springer, 2006. 268 p.
  • Erişir A., Van Horn S.C., Sherman S. M. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus // Proc. Natl. Acad. Sci. U S A. 1997. V. 94. No 4. P. 1517–1520.
  • Erişir A., Van Horn S.C., Sherman S. M. Distribution of synapses in the lateral geniculate nucleus of the cat: di erences between laminae A and A1 and between relay cells and interneurons // J. Comp. Neurol. 1998. V. 390. No 2. P. 247–255.
  • Eysel U. T. Late effects of deafferentation and signs of plasticity in the lateral geniculate nucleus of the adult cat after monocular lesions of the retina // Arch. Ital. Biol. 1978. V. 116. No 3–4. P. 309–317.
  • Faguet J., Maranhao B., Smith S.L., Trachtenberg J.T. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity // J. Neurophysiol. 2009. V. 101. No 2. P. 855–861.
  • Friedlander M. J. Structure of physiologically classified neurones in the kitten dorsal lateral geniculate nucleus // Nature. 1982. V. 300. No 5888. P. 180–183.
  • Garraghty P.E., Sur M., Weller R.E., Sherman S.M. Morphology of retinogeniculate X and Y axon arbors in monocularly enucleated cats // J. Comp. Neurol. 1986. V. 251. No 2. P. 198–215.
  • Guillery R.W., Stelzner D.J.The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat // J. Comp. Neurol. 1970. V. 139. No 4. P. 413–421.
  • Hess R.F., Thompson B., Gole G., Mullen K. T. De cient responses from the lateral geniculate nucleus in humans with amblyopia // Eur. J. Neurosci. 2009. V. 29. P. 1064–1070.
  • Hess R.F., Thompson B., Gole G.A., Mullen K.T.The amblyopic de cit and its relationship to geniculo-cortical processing streams // J. Neurophysiol. 2010. V. 104. No 1. P. 475–483.
  • Hevner R.F., Wong-Riley M. T. Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system // J. Neurosci. 1990. V. 10. No 4. P. 1331–1340.
  • Hooks B.M., Chen C. Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse // Neuron. 2006. V. 52. No 2. P. 281–291.
  • Hooks B.M., Chen C. Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse // J. Neurosci. 2008. V. 28. No 18. P. 4807–4817.
  • Hubel D.H., Wiesel T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens // J. Physiol. 1970. V. 206. No 2. P. 419–436.
  • Hubel D.H., Wiesel T.N.Brain and visual perception. University Press. New York, Oxford, 2005. 744 p.
  • Kageyama G.H., Wong-Riley M. The localization of cytochrome oxidase in the LGN and striate cortex of postnatal kittens // J. Comp. Neurol. 1986. V. 243. No 2. P. 182–194.
  • Kato H., Bishop P.O., Orban G. A. Binocular interaction on monocularly discharged lateral geniculate and striate neurons in the cat // J. Neurophysiol. 1981. V. 46. No 5. P. 932–951.
  • Lin D.J., Kang E., Chen C. Changes in input strength and number are driven by distinct mechanisms at the retinogeniculate synapse // J. Neurophysiol. 2014. V. 112. No 4. P. 942–950.
  • Loop M.S., Sherman S. M. Visual discriminations during eyelid closure in the cat // Brain Res. 1977. V. 128. No 2. P. 329–339.
  • Mangel S.C., Wilson J.R., Sherman S. M. Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation // J. Neurophysiol. 1983. V. 50. No 1. P. 240–264.
  • Mower G.D., Christen W. G. Effects of early monocular deprivation on the acuity of lateral geniculate neurons in the cat // Brain Res. 1982. V. 255. No 3. P. 475–480.
  • Mower G.D., Christen W.G., Caplan C. J. Very brief visual experience eliminates plasticity in the cat visual cortex // Science. 1983. V. 221. No 4606. P. 178–180.
  • Olson C.R., Freeman R.D. Pro le of the sensitive period for monocular deprivation in kittens // Exp. Brain Res. 1980. V. 39. No 1. P. 17–21.
  • Ruthazer E.S., Baker G.E., Stryker M.P. Development and organization of ocular dominance bands in primary visual cortex of the sable ferret // J. Comp. Neurol. 1999. V. 407. No 2. P. 151–165.
  • Sanderson K. J. The projection of the visual eld to the lateral geniculate and medial interlaminar nuclei in the cat // J. Comp. Neurol. 1971. V. 143. No 1. P. 101–108.
  • Sengpiel F., Vorobyov V. Intracortical origins of interocular suppression in the visual cortex // J. Neurosci. 2005. V. 25. No 27. P. 6394–6400.
  • Shatz C. J. The prenatal development of the cat’s retinogeniculate pathway // J. Neurosci. 1983. V. 3. No 3. P. 482–499.
  • Stellwagen D., Shatz C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity // Neuron. 2002. V. 33. No 3. P. 357–367.
  • Sur M., Humphrey A.L., Sherman S.M. Monocular deprivation affects X- and Y-cell retinogeniculate terminations in cats // Nature. 1982. V. 300. No 5888. P. 183–185.
  • Sur M., Weller R.E., Sherman S.M. Development of X- and Y-cell retinogeniculate terminations in kittens // Nature. 1984. V. 310. No 5974. P. 246–249.
  • Timney B. Effects of brief monocular deprivation on binocular depth perception in the cat: a sensitive period for the loss of stereopsis // Vis. Neurosci. 1990. V. 5. No 3. P. 273–280.
  • Van Horn S.C., Erişir A., Sherman S. M. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat // J. Comp. Neurol. 2000. V. 416. No 4. P. 509–520.
  • Xue J.T., Ramoa A.S., Carney T., Freeman R. D. Binocular interaction in the dorsal lateral geniculate nucleus of the cat // Exp. Brain Res. 1987. V. 68. No 2. P. 305–310.
  • Weliky M., Katz L. C. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo // Science. 1999. V. 285. P. 599–604.
  • Wiesel T.N., Hubel D. H. Single cell responses in striate cortex of kittens deprived of vision in one eye // J. Neurophysiol. 1963a. V. 26. No 6. P. 1103–1107.
  • Wiesel T.N., Hubel D. H. Effects of visual deprivation on morphology and physiology of cells in the cat’s latral geniculate body // J. Neurophysiol. 1963b. V. 26. No 6. P. 978–993.
  • Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry // Brain Res. 1979. V. 171. No 1. P. 11–28.