• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Optogenetics and vision

© 2015 M. A. Ostrovsky1, M. P. Kirpichnikov1,2

Emanuel Institute of Biochemical Physics RAS, 119934 Moscow, Kosygin str., 4
1Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Leninskie gory, 12

Received 24 Jul 2015

Provides an overview of the current state of a new direction in the physiology of vision and ophthalmology, based on optogenetics techniques. Optogenetics is a new interdisciplinary technique that combines genetic engineering, optics and physiology. Optogenetics allows using light-activating protein, a gene which is delivered and is expressed in a particular cell of the retina, to regulate by light (activate or inhibit) the physiological activity of the cell. This new approach extremely promising both for fundamental researches of the retina, as is currently the case with regard to the brain, and for degenerative retinal prosthetics. Ontogenetics prosthetics is based on the fact that the loss of photoreceptors are usually not accompanied by loss of the nerve cells of the retina and visual pathways in the brain. Therefore giving by optogenetics methods to the preserved cells of the retina, namely bipolar or ganglion cells, light sensitivity, may allow to restore the visual functions of degenerative retina.

Key words: optogenetics, retina, retinal prosthesis, channelrhodopsin, degenerative diseases of the retina

Cite: Ostrovsky M. A., Kirpichnikov M. P. Optogenetika i zrenie [Optogenetics and vision]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 289-295 (in Russian).

References:

  • Bi A., Cui J., Ma Y-P., Olshevskaya E., Pu M. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration // Neuron. 2006. V. 50. P. 23–33.
  • Busskamp V., Roska B. Optogenetic approaches to restoring visual function in retinitis pigmentosa // Current Opin. Neurobiol. 2011. V. 21. P. 942–946.
  • Chow B.Y., Chuong A.S., Klapoetke N.C., Boyden E.S. Synthetic physiology strategies for adapting tools from nature for genetically targeted control of fast biological processes // Methods Enzymol. 2011.V. 497. P. 425– 443.
  • Curcio C.A., Medeiros N.E., Millican C.L. Photoreceptor loss in age-related macular degeneration // Invest. Ophthalmol. Vis. Sci. 1996. V. 37. P. 1236–1249.
  • da Cruz L., Coley B.F., Dorn J. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss // Br. J. Ophthalmol. 2013. V. 97. P. 632–636.
  • Francis P.J., Mansfield B., Rose S. Proceedings of the first International Optogenetic Therapies for Vision Symposium // Trans. Vis. Sci. Tech. 2013.
  • Grote M., Engelhard M., Hegemann P. Of ion pumps, sensors and channels – Perspectives on microbial rhodopsins between science and history // Biochim. Biophys. Acta. 2014. V. 1837(5). P. 533–545.
  • Han X., Chow B.Y., Zhou H. A high-light sensitivity optical neural silencer: development and application to optogenetic control of nonhuman primate cortex // Front. Syst. Neurosci. 2011. V. 5. P. 18–22.
  • Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa // Lancet. 2006. V. 368. P. 1795–1809.
  • Hattar S., Liao H.W., Takao M., Berson D.M., Yau K.W.
  • Melanopsin-containing retinal ganglion cell: architecture, projections, and intrinsic photosensitivity// Science. 2002. V. 295. P. 1065–1070.
  • Jones B.W., Kondo M., Terasaki H., Lin Y., McCall M., Marc R.E. Retinal remodeling // Jpn. J. Ophthalmol. 2012. V. 56. P. 289–306.
  • Lagali P.S., Balya D., Awatramani G.B., Munch T.A., Kim D.S. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration // Nature Neurosci. 2008. V. 11. P. 667–675.
  • Lin B., Koizumi A., Tanaka N., Panda S., Masland R.H. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin // Proc. Natl. Acad. Sci. U S A . 2008. V. 105. P. 16009–16014.
  • Lin J.Y., Knutsen P.M., Muller A., Kleinfeld D., Tsien R.Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation // Nature Neurosci. 2013. V. 16. P. 1499–1508.
  • Lin Y., Jones B.W., Liu A. Retinoid receptors trigger neuritogenesis in retinal degenerations // FASEB J. 2012. V. 26. P. 81–92.
  • Mancuso K., Hauswirth W.W., Li Q. Gene therapy for redgreen colour blindness in adult primates //Nature. 2009. V. 461. P. 784–787.
  • Marc R.E., Jones B.W., Anderson J.R. Neural reprogramming in retinal degeneration // Invest. Ophthalmol. Vis. Sci. 2007. V. 48. P. 3364–3371.
  • Mazzoni F., Novelli E., Strettoi E. Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration // J. Neurosci. 2008. V. 28. P. 14282–14292.
  • Medeiros N.E., Curcio C.A. Preservation of ganglion cell layer neurons in age-related macular degeneration // Invest. Ophthalmol. Vis. Sci. 2001. V. 42. P. 795–803.
  • Mutter M., Munch T.A. Strategies for Expanding the Operational Range of Channelrhodopsin in Optogenetic Vision. PLoS ONE. 2013. V. 8(11): e81278.
  • Nakajima Y., Moriyama M., Hattori M., Minato N., Nakanishi S. Isolation of ON bipolar cell genes via hrGFP-coupled cell enrichment using the mGluR6 promoter // J. Biochem. 2009. V. 145. P. 811–818.
  • Pan Z.H., Lu Q., Ganjawala T., Cheng J. AAV-mediated expression targeting of retinal rod bipolar cells with an optimized mGluR6 promoter // Invest. Ophthalmol. Vis. Sci.2014a. V. 43.
  • Pan Z.H., Ganjawala T.H., Lu Q., Ivanova E., Zhang Z. ChR2 mutants at LI32 and T159 with improved operational light sensitivity for vision restoration. PloS ONE 9. 2014b. e9892.
  • Panda S. Multiple photopigments entrain the Mammalian circadian oscillator // Neuron. 2007. V. 53. P. 619– 621.
  • Panda S., Sato T.K., Castrucci A.M. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting // Science. 2002. V. 298. P. 2213–2216.
  • Polosukhin A., Litt J., Tochitsky I. Photochemical restoration of visual responses in blind mice // Neuron. 2012. V. 75. P. 271–282.
  • Prigge M., Schneider F., Tsunoda S.P., Shilyansky C., Wietek J., Deisseroth K., Hegemann P. Color-tuned Channelrhodopsins for Multiwavelength Optogenetics // J. Biol. Chemistry. 2012. V. 287. N 38. P. 31804– 31812.
  • Strettoi E., Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa // Proc. Nat. Acad. Sci. U S A . 2000. V. 97. P. l1020–11025.
  • van Wyk M., Pielecka-Fortuna J., Löwel S., Kleinlogel S. Restori
  • Wietek J., Wiegert J.S., Adeishvili N., Schneider F., Watanabe H. Conversion of channelrhodopsin into a lightgated chloride channel // Science. 2014. V. 344. P. 409– 412.
  • Wu C., Ivanova E., Zhang Y., Pan Z-H. rAAV-Mediated Subcellular Targeting of Optogenetic Tools in Retinal Ganglion Cells In Vivo. PLoS ONE 8(6). 2013.: e66332.
  • Zhang Y., Ivanova E., Bi A., Pan Z-H. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in the retina after photoreceptor degeneration // J. Neurosci.2009. V. 29. P. 9186–9196.