• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

AUDITORY SYSTEM OF BLOOD-SUCKING MOSQUITOES (DIPTERA, CULICIDAE)

© 2024 D. N. Lapshin

Institute for information transmission problems (Kharkevich Institute) 127051, Moscow, Bolshoy Karetny per., 19, build. 1, Russia

Received 19 Apr 2024

This review comprehensively explores the morphology of the mosquito auditory organs – antennae and Johnston’s organs. Spatial and frequency characteristics of auditory sensory neurons within Johnston’s organs are discussed, as well as the mechanisms of mechanotransduction in these neurons. The review presents findings from studies investigating the aspects of mosquito perception of acoustic signals when their auditory system is subjected to vibrations generated by flapping wings. Additionally, the review discusses the significance of acoustic communication in the reproductive behavior of mosquitoes.

Key words: Culicidae, Aedes, Culex, mosquito, frequency tuning, acoustic stimulation, directional diagram, hearing mechanisms, mating behavior, acoustic detection of hosts

DOI: 10.31857/S0235009224030016  EDN: BSGQLL

Cite: Lapshin D. N. Slukhovaya sistema krovososushchikh komarov (diptera, culicidae) [Auditory system of blood-sucking mosquitoes (diptera, culicidae)]. Sensornye sistemy [Sensory systems]. 2024. V. 38(3). P. 3–30 (in Russian). doi: 10.31857/S0235009224030016

References:

  • Vasil’eva O.L., Korzikov V. A., Gabaraeva E. A., Rogulenko A. V., Vinnikova O. N., Ovsjannikova L. V. Obzor fauny krovososushchikh komarov (Culicidae) Kaluzhskoy oblasti – risk perenoschikov vozbuditeley zabolevaniy cheloveka [The review of mosquito fauna (Diptera, Culicidae) as possible vectors of dangerous diseases of humans]. Meditsinskaya parazitologiya i parazitarnyye bolezni. 2019. V. 3. P. 3–9. DOI: 10.33092/0025-8326mp2019.3.3-9 (In Russian).
  • Vorontsov D. D., Lapshin D. N. Vliyanie oktopamina na chastotnuyu nastroyku slukhovoy sistemy komarov Culex pipiens pipiens (Diptera, Culicidae) [Effect of octopamine on the frequency tuning of the auditory system in Culex pipiens pipiens mosquito (Diptera, Culicidae)]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 244–257. DOI: 10.31857/S0235009223030071 (In Russian).
  • Kazhan V. G., Moshkov, P. A., Samokhin, V. F. Prirodnyy fon pri provedenii akusticheskikh ispytaniy samoletov na aerodrome bazy maloy aviatsii. Nauka i obrazovaniye. [Ambient background noise under acoustic tests of aircrafts at the local aerodrome]. Nauka i obrazovanie. MGTU im. N.E. Baumana. Elektron. zhurn. [Science and Education of the Bauman MSTU]. 2015. V. 7. P. 146–170. DOI: 10.7463/0715.0782827 (In Russian).
  • Lapshin D. N. Chastotnyye kharakteristiki slukhovykh interneyronov samtsov komarov Culex pipiens pipiens L. (Diptera, Culicidae). [Frequency threshold curves of auditory interneurons of male mosquitoes Culex pipiens pipiens L. (Diptera, Culicidae)]. Doklady Akademii Nauk. [Doklady Biological Sciences]. 2011. V. 439(2). P. 279–281. (In Russian).
  • Lapshin D. N. Bioakustika komarov: funktsionirovaniye slukhovoy sistemy samtsov Culex pipiens pipiens L. v usloviyakh imitatsii poleta [Mosquito bioacoustics: auditory processing in males of Culex pipiens pipiens L. (Diptera, Culicidae) during f light simulation]. Entomologicheskoye obozreniye [Entomological Review]. 2012a. V. 91(1). P. 36–57. (In Russian).
  • Lapshin D. N. Slukhovaya sistema samok krovososushchikh komarov (Diptera, Culicidae): akusticheskoye vospriyatiye v usloviyakh imitatsii poleta [Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation]. Entomologicheskoye obozreniye [Entomological Review]. 2012b. V. 91(3). P. 465–484. (In Russian).
  • Lapshin D. N., Vorontsov D. D. Nizkochastotnyye zvuki otpugivayut samtsov komarov Aedes diantaeus N.D.K. (Diptera, Culicidae) [Low-frequency sounds repel male mosquitoes Aedes diantaeus N.D.K. (Diptera, Culicidae)]. Entomologicheskoye obozreniye [Entomological Review]. 2018. V. 97(2). P. 194–202. (In Russian).
  • Lapshin D. N., Vorontsov D. D. Funktsii slukhovoy sistemy samok krovososushchikh komarov (Diptera, Culicidae) [Functions of the auditory system of female mosquitoes (Diptera, Culicidae)]. Entomologicheskoye obozreniye [Entomological Review]. 2023. V. 102(3). P. 205–221. (In Russian).
  • Lependin D. F. Akustika [Acoustics]. Moscow. Vysshaya shkola Publ., 1978. 448 p. (In Russian).
  • Tamarina N. A., Zhantiev R. D., Fyodorova M. V. Chastotnyye kharakteristiki zvukovykh poletov i dzhonstonovykh organov simpatricheskikh komarov roda Aedes (Culicidae). [Frequency characteristics of flight sounds and Johnston’s organs of sympatric mosquitoes of the genus Aedes (Culicidae)]. Parazitologiya [Parasitology]. 1980. V. 14. P. 398–402. (In Russian).
  • Fyodorova M. V., Lopatina Yu.V., Khutorecskaya N. V., Lazorenko V. V., Platonov A. E. Izucheniye fauny krovososushchikh komarov (Diptera, Culicidae) Volgograda v svyazi so vspyshkoy likhoradki Zapadnogo Nila v Volgogradskoy oblasti v 1999 g. [The study of mosquito fauna (Diptera, Culicidae) in Volgograd city in light of the outbreak of West Nile fever in Volgograd region, 1999]. Parazitologiya [Parasitology]. 2004. V. 38 (3). P. 209–218. (In Russian).
  • Fedorova M. V., Ryabova T. E., Shaposhnikova L. I., Lopatina Yu. V., Sebentsova A. N., Yunicheva Yu.V. Invazivnyye vidy komarov na territorii g. Sochi: mesto razvitiya preimaginal’nykh stadiy i metody ucheta [Invasive mosquito species on the territory of Sochi: larval development places and counting methods]. Meditsinskaya parazitologiya i parazitarnyye bolezni [Medical parasitology and parasitic diseases]. 2017. V. 4. P. 9–15. (In Russian).
  • Fedorova M. V., Shvets O. G., Yunicheva Yu.V., Medyanik I. M., Ryabova T. E., Otstavnova A. D. Sovremennaya granitsa rasprostraneniya invazivnykh komarov Aedes (Stegomyia) aegypti (L.,1762) i Aedes (Stegomyia) albopictus (Skuse, 1895) na yuge Krasnodarskogo kraya Rossii [Dissemination of invasive mosquito species, Aedes (Stegomyia) aegypti (L., 1762) and Aedes (Stegomyia) albopictus (Skuse, 1895) in the south of Krasnodar region, Russia]. Problemy osobo opasnykh infektsiy [Problems of Particularly Dangerous Infections]. 2018. T. 2. P. 101–105. DOI: 10.21055/0370-1069-2018-2-101-105 (In Russian).
  • Kharkevich A. A. Osnovy radiotekhniki. Moscow. Svyaz’izdat Publ., 1962. 350 p. (In Russian).
  • Andrés M., Seifert M., Spalthoff C., Warren B., Weiss L., Giraldo D., Winkler M., Pauls S., Go M. Göpfert M. C. Auditory efferent system modulates mosquito hearing. Current Biology. 2016. V. 26. P. 1–9. DOI: 10.1016/j.cub.2016.05.077
  • Aldersley A., Champneys A. R., Homer M., Robert D. Quantitative analysis of harmonic convergence in mosquito auditory interactions. J. Royal Society Interface. 2016. V. 13. № 117. P. 20151007. DOI: 10.1098/rsif.2015.1007
  • Arthur B. J., Wyttenbach R. A., Harrington L. C., Hoy R. R. Neural responses to one- and two-tone stimuli in the hearing organ of the dengue vector mosquito. J. Experimental Biology. 2010. V. 213. P. 1376–1385. DOI: 10.1242/jeb.033357
  • Bartlett-Healy K., Crans W., Gaugler R. Phonotaxis to amphibian vocalizations in Culex territans (Diptera: Culicidae). Annals of the Entomological Society of America. 2008. V. 101. P. 95–103. DOI: 10.1603/0013-8746(2008)101[95:PTAVIC]2.0.CO;2
  • Bartholomew G. A., Heinrich B. A field study of flight temperatures in moths in relation to body weight and wing loading. J. Experimental Biology. 1973. V. 58. P. 123–135. DOI: 10.1242/jeb.58.1.123
  • Belton P. Trapping mosquitoes with sound. Proceedings California Mosquito Control Association. 1967. V. 35. P. 98.
  • Belton P. An analysis of direction finding in male mosquitoes. Experimental Analysis of Insect Behaviour. Ed. Browne L. B. Berlin/Heidelberg, Germany, New York, NY, USA. Springer, 1974. P. 139–148.
  • Boo K. S., Richards A. G. Fine structure of the scolopidia in the Johnston’s organ of male Aedes aegypti (L.) (Diptera: Culicidae). Int. J. Insect Morphol. Embryol. 1975a. V. 4. P. 549–566. DOI: 10.1016/0020-7322(75)90031-8
  • Boo K. S., Richards A. G. Fine structure of scolopidia in Johnston’s organ of female Aedes aegypti compared with that of the male. J. Insect Physiol. 1975b. V. 21. P. 1129–1139. DOI: 10.1016/0022-1910(75)90126-2
  • Borkent A., Grimaldi D. A. The Earliest Fossil Mosquito (Diptera: Culicidae), in mid-cretaceous burmese amber. Annals of the Entomological Society of America. 2004. V. 97. № 5. P. 882–888. DOI: 10.1603/0013-8746(2004)097[0882:TEFMDC]2.0.CO;2.
  • Borkent A., Belton P. Attraction of female Uranotaenia lowii (Diptera: Culicidae) to frog calls in Costa Rica. The Canadian Entomologist. 2006. V. 138. P. 91–94. DOI: 10.4039/n04-113.
  • Cator L. J., Arthur B. J., Harrington L. C., Hoy R. R. Harmonic convergence in the love songs of the dengue vector mosquito. Science. 2009. V. 323. P. 1077–1079. DOI: 10.1126/science.1166541
  • Charlwood J. D., Jones M. D.R. Mating behaviour in the mosquito, Anopheles gambiae s.1. Close range and contact behaviour. Physiological Entomology. 2008. V. 4. № 2. P. 111–120. DOI: 10.1111/j.1365-3032.1979.tb00185.x
  • Clements A. N. The biology of mosquitoes Vol. 2 Sensory Reception and Behaviour. New York. CABI Publishing, 1999. 758 p.
  • Clemens J., Ozeri-Engelhard N., Murthy M. Fast intensity adaptation enhances the encoding of sound in Drosophila. Nat. Commun. 2018. V. 9. 134. DOI: 10.1038/s41467-017-02453-9.
  • Feugère L., Roux O., Gibson G. Behavioural analysis of swarming mosquitoes reveals high hearing sensitivity in Anopheles coluzzii. J. Experimental Biology. 2022. V. 225. № 5. jeb243535. DOI: 10.1242/jeb.243535
  • Finetti L., Paluzzi J. P., Orchard I., Lange A. B. Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PloS one. 2023. V. 18. № 2. e0281917. DOI: 10.1371/journal.pone.0281917
  • Fitch J. L., Holbrook A. Modal vocal fundamental frequency of young adults. Archives of Otolaryngology. 1970. V. 92. P. 379–382. DOI: 10.1001/archotol.1970.04310040067012
  • Georgiades M., Alampounti C. A., Somers J., Su M., Ellis D., Bagi J., Ntabaliba W., Moore S., Albert J. T., Andrés M. A novel beta-adrenergic like octopamine receptor modulates the audition of malaria mosquitoes and serves as in secticide. https://www.biorxiv.org/content/10.1101/2022.08.02.502538v1 (accessed 08.02.2022) (preprint). DOI: 10.1101/2022.08.02.502538
  • Gibson G., Russell I. Flying in tune: sexual recognition in mosquitoes. Current Biology. 2006. V. 16. P. 1311–1316. DOI: 10.1016/j.cub.2006.05.053
  • Gibson G., Warren B., Russell I. Humming in tune: sex and species recognition by mosquitoes on the wing. Journal of the Association for Research in Otolaryngology. 2010. V. 11. P. 527–540. DOI: 10.1007/s10162-010-0243-2
  • Gokhale A., Wirschell M., Sale W. S. Regulation of dyneindriven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. J. Cell Biol. 2009. V. 186. №. 6. P. 817–824. DOI: 10.1083/jcb.200906168
  • Göpfert M. C., Robert D. Nanometre-range acoustic sensitivity in male and female mosquitoes. Proc. R. Soc. Lond. B. 2000. V. 267. P. 453–457. DOI: 10.1098/rspb.2000.1021
  • Göpfert M. C., Robert D. Active auditory mechanics in mosquitoes. Proc. R. Soc. Lond. B. 2001. V. 268. P. 333–339. DOI: 10.1098/rspb.2000.1376
  • Göpfert M. C., Robert D. Motion generation by Drosophila mechanosensory neurons. PNAS. 2003. V. 100. № 9. P. 5514–5519. DOI: 10.1073/pnas.0737564100
  • Göpfert M. C., Briegel H., Robert D. Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J. Experimental Biology. 1999. V. 202. P. 2727–2738. DOI: 10.1242/jeb.202.20.2727
  • Göpfert M. C., Humphris A. D.L., Albert J. T., Robert D., Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. PNAS. 2005. V. 102. № 2. P. 325–330. DOI: 10.1073/pnas.0405741102
  • Hart M., Belton P., Kuhn R. The Risler Manuscript. European Mosquito Bulletin. 2011. V. 29. P. 103–111.
  • Ignell R., Dekker T., Ghaninia M., Hansson B. S. Neuronal architecture of the mosquito deutocerebrum. J. Comparative Neurology. 2005. V. 493. P. 207–240. DOI: 10.1002/cne.20800
  • Jackson J. C., Robert D. Nonlinear auditory mechanism enhances female sounds for male mosquitoes. PNAS. 2006. V. 103. № 45. P. 16734–16739. DOI: 10.1073/pnas.0606319103
  • Johnston C. Auditory apparatus of the Culex mosquito. quart. J. Microscop. Sci. 1855. V. 3. P. 97–102. DOI: 10.1242/jcs.s1-3.10.97
  • Kamikouchi A., Inagaki H. K., Effertz T., Hendrich O., Fiala A., Göpfert M. C., Ito K. The neural basis of Drosophila gravity sensing and hearing. Nature. 2009. V. 458, P. 165–171. DOI: 10.1038/nature07810
  • Kamimura S., Kamiya R. High-frequency nanometre-scale vibration in ‘quiescent’ flagellar axonemes. Nature. 1989. V. 340. P. 476–478. DOI: 10.1038/340476a0
  • Kernan M., Zuker C. Genetic approaches to mechanosensory transduction. Current Opinion in Neurobiology. 1995. V. 5. № 4. P. 443–448. DOI: 10.1016/0959-4388(95)80003-4
  • Köppl C., Мanley G. A. Spontaneous otoacoustic emissions in the bobtail lizard. I. General characteristics. Hear. Res. 1993. V. 71. P. 157–169. DOI: 10.1016/0378-5955(93)90031-u
  • Lapshin D. N. Mosquito bioacoustics: auditory processing in males of Culex pipiens pipiens L. (Diptera, Culicidae) during flight simulation. Entomological Review. 2012. V. 92. № 6. P. 605–621. DOI: 10.1134/S0013873812060024
  • Lapshin D. N. Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation. Entomological Review. 2013. V. 93. № 2. P. 135–149. DOI: 10.1134/S0013873813020012
  • Lapshin D. N., Vorontsov D. D. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae). J. Insect Physiol. 2013. V. 59. № 8. P. 828–839. DOI: 10.1016/j.jinsphys.2013.05.010
  • Lapshin D. N., Vorontsov D. D. Frequency organization of the Johnston organ in male mosquitoes (Diptera, Culicidae). J. Experimental Biology. 2017. V. 220. P. 3927–3938. DOI:10.1242/jeb.152017
  • Lapshin D. N., Vorontsov D. D. Low-frequency sounds repel male mosquitoes Aedes diantaeus N.D.K. (Diptera, Culicidae). Entomological Review. 2018. V. 98. № 3. P. 266–271. DOI: 10.1134/S0013873818030028
  • Lapshin D. N., Vorontsov D. D. Directional and frequency characteristics of auditory neurons in Culex male mosquitoes. J. Experimental Biology. 2019. V. 222. jeb208785. DOI: 10.1242/jeb.208785
  • Lapshin D. N., Vorontsov D. D. Frequency tuning of swarming male mosquitoes (Aedes communis, Culicidae) and its neural mechanisms. J. Insect Physiology. 2021. V. 132. DOI: 10.1016/j.jinsphys.2021.104233
  • Lapshin D. N., Vorontsov D. D. Mapping the auditory space of Culex pipiens female mosquitoes in 3D. Insects. 2023a. V. 14. № 743. P. 1–23. DOI: 10.3390/insects14090743
  • Lapshin D. N., Vorontsov D. D. Functions of the auditory system of female mosquitoes (Diptera, Culicidae). Entomological Review. 2023b. V. 103. №. 3, P. 251–262. DOI: 10.1134/S0013873823030016
  • Loh Y. M., Su M. P., Ellis D. A. and Andrés M. The auditory efferent system in mosquitoes. Frontiers in Cell and Developmental Biology. 2023. V. 11-1123738.11. P. 1–15. DOI: 10.3389/fcell.2023.1123738
  • McIver S. B. Sensilla mosquitoes (Diptera: Culicidae). Med. Entomol. 1982. V. 19. № 5. P. 489–535. DOI: 10.1093/jmedent/19.5.489
  • Manley G. A., Yates G. A., Köppl C. Auditory peripheral resonance: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear. Res. 1988. V. 33. P. 181–190. DOI: 10.1016/0378-5955(88)90031-7
  • Matsuo E., Kamikouchi A. Neuronal encoding of sound, gravity, and wind in the fruit fly. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2013. V. 199. P. 253–262. DOI: 10.1007/s00359-013-0806-x
  • Menda G., Nitzany E. I., Shamble P. S., Wells A., Harrington L. C., Miles R. N., Hoy R. R. The long and short of hearing in the mosquito Aedes aegypti. Current Biology. 2019. V. 29. № 4. P. 709–714. DOI: 10.1016/j. cub.2019.01.026
  • Nadrowski B., Martin P., Jülicher F. Active hair-bundle motility harnesses noise to operate near an optimum of mechanosensitivity. PNAS. 2004. V. 101. № 33. P. 12195–12200. DOI: 10.1073/pnas.0403020101
  • Nadrowski B., Albert J. T., Göpfert M. C. Transducer-based force generation explains active process in Drosophila hearing. Current Biology. 2008. V. 18. P. 1365–1372. DOI: 10.1016/j.cub.2008.07.095
  • Nadrowski B., Göpfert M. C. Level-dependent auditory tuning: transducer-based active processes in hearing and best-frequency shifts. Communicative and Integrative Biology. 2009. B. 2. Ausgabe 1. S. 7–10. DOI: 10.4161/CIB.2.1.7299
  • Ogawa K., Sato H. Relationship between male acoustic response and female wingbeat frequency in a chironomid midge, Chironomus yoshimatsui (Diptera: Chironomidae). Medical Entomology and Zoology. 1993. V. 44. № 4. P. 355–360. DOI: 10.7601/mez.44.355
  • Pennetier C., Warren B., Dabiré K. R., Russell I. J., Gibson G. “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Current Biology. 2010. V. 20. P. 131–136. DOI: 10.1016/j. cub.2009.11.040
  • Risler H., Schmidt K. Der Feinbau der Scolopidien im Johnstonschen Organ von Aedes aegypti L. Z. Naturforschung. 1967. B. 22b. S. 759–762.
  • Robert D., Göpfert M. C. Novel schemes for hearing and orientation in insects. Current Opinion in Neurobiology. 2002. V. 12. P. 715–720. DOI: 10.1016/s0959-4388(02)00378-1
  • Roeder K. D., Treat A. E. Ultrasonic reception by the tympanic organ of noctuid moths. J. Experimental Zoology. 1957. V.134. P.127–158. DOI: 10.1002/jez.1401340107
  • Römer F. Einfluss von Temperatur und Alter auf die Flugtonhöhe beim Schwärmen von Chironomus plumosus L. Rev. Suisse Zool. 1970. Bd. 77. S. 603–616.
  • Roth L. M. A study of mosquito behavior. An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). The American Midland Naturalist. 1948. V. 40. P. 265–352.
  • Shimozawa T., Kanou M. The aerodynamics and sensory physiology of range fractionation in the cereal filiform sensilla of the cricket Gryllus bimaculatus. J. Соmр. Physiol. 1984. V. 155, № 4. P. 495–505. DOI: 10.1007/BF00611914
  • Shingyoji C., Higuchi H., Yoshimura M., Katayama E., Yanagida T. Dynein arms are oscillating force generators. Nature. 1998. V. 393. № 6686. P. 711–714. DOI: 10.1038/31520.
  • Simões P. M.V., Robert A. Ingham R. A., Gibson G., Russell I. J. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. J. Experimental Biol. 2016. V. 219. P. 2039–2047. DOI: 10.1242/jeb.135293
  • Sotavalta O. The flight-tone (wing-stroke frequency) of insects. Acta Entomol. Fenn. 1947. V. 4. P. 1–117.
  • Su M.P., Andrés M., Boyd-Gibbins N., Somers J., Albert J. T. Sex and species specific hearing mechanisms in mosquito flagellar ears. Nature Communications. 2018. V. 9. P. 3911. DOI: 10.1038/s41467-018-06388-7
  • Tischner H. Über den Gehörsinn von Stechmücken. Acustica Suisse. 1953. Bd. 3. S. 335–343.
  • Tischner H., Schief A. Fluggeräusch und Schallwahrnehmung bei Aedes aegypti L. (Culicidae). Zool. Anz. 1955. Bd. 18 (Suppl.). S. 453–460.
  • Vorontsov D. D., Lapshin D. N. Effect of octopamine on the frequency tuning of the auditory system in Culex pipiens pipiens mosquito (Diptera, Culicidae). Neuroscience and Behavioral Physiology. 2024. V. 54. №. 2. 10 p. DOI: 10.1007/s11055-024-01600-2
  • Warren B., Gibson G., Russell I. J. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Current Biology. 2009. V. 9. P. 485–491. DOI: 10.1016/j.cub.2009.01.059
  • Warren B., Lukashkin A. N., Russell I. J. The dynein–tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito. Proceedings of the Royal Society B. 2010. V. 277. P. 1761–1769. DOI: 10.1098/rspb.2009.2355
  • Wishart G., van Sickle G. R., Riordan D. F. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Canadian Entomologist. 1962. V. 94. P. 613–626. DOI: 10.4039/Ent94613-6
  • Xu Y.Y.J., Loh Y. M.M., Tai-Ting L., Ohashi T. S., Su M.P., Kamikouchi A. Serotonin modulation in the male Aedes aegypti ear influences hearing. Frontiers in Physiology. 2022. V. 13-931567. DOI: 10.3389/fphys.2022.931567
  • Yack J. E. The structure and function of auditory chordotonal organs in insects. Microscopy Research and Technology. 2004. V. 63. № 6. P. 315–227. DOI: 10.1002/jemt.20051
  • Yorozu S., Wong A., Fischer B. J., Dankert H., Kernan M. J., Kamikouchi A., Ito K., Anderson D. J. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature. 2009. V. 458. P. 201–205. DOI: 10.1038/nature07843
  • Ziemer T., Wetjen F., Herbst A. The antenna base plays a crucial role in mosquito courtship behavior. Frontiers in Tropical Diseases. 2022. V. 3. P. 803611. DOI: 10.3389/fitd.2022.803611