• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

ABOUT THE POSSIBILITY OF USING FIXATION MICROSACCADES TO IMPROVE A QUALITY OF VISIBLE IMAGES IN THE FOVEAL ZONE

© 2024 D. S. Lebedev, A. V. Belokopytov, G. I. Rozhkova, N. N. Vasilyeva, M. A. Gracheva

Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051, Moscow, B. Karetny per., 19, Build. 1, Russia

Received 01 Mar 2024

The article is devoted to the description and analysis of a computer model that was created by D. S. Lebedev to demonstrate the possibility of a positive effect of fixation microsaccadic eye movements on the perception of small stimuli. The model is based on the assumption that in the process of fixing the gaze on the test stimulus, several “neural images” of this stimulus, resulting from microsaccades, are summed up in the brain. The series of summed neural images correspond to a sequence of shifted positions of the optical image of a stimulus on the retina. To accurately superimpose neural images on each other, a mechanism for compensating fixation saccadic microshifts is introduced into the model, identical to the mechanism that ensures the constancy of spatial perception in the case of macrosaccades, i.e. when turning the eyes to view large objects or scenes. The author of the model assessed the possibility of improving the quality of visible images by increasing the signal-to-noise ratio, which can be achieved using realistic spatiotemporal parameters of test images, neural noise and eye micromovements, selected bу means of literature analysis. Results of model calculation obtained for the specific parameters of the retina and eye movements showed that the considered summation mechanism with compensation for saccadic shifts can progressively improve the quality of visible test stimuli when the number of summed neural images increases to approximately seven or eight, after which the positive effect practically does not increase. In this article, based on the material of recordings of eye movements in relevant experiments, the degree of realism of this model is discussed.

Key words: visual perception, foveal vision, fixation microsaccade, modeling, vision process, eye tracking

DOI: 10.31857/S0235009224030044  EDN: BRYHFS

Cite: Lebedev D. S., Belokopytov A. V., Rozhkova G. I., Vasilyeva N. N., Gracheva M. A. O vozmozhnosti ispolzovaniya fiksatsionnykh mikrosakkad dlya povysheniya kachestva vidimykh obrazov v fovealnoi zone [About the possibility of using fixation microsaccades to improve a quality of visible images in the foveal zone]. Sensornye sistemy [Sensory systems]. 2024. V. 38(3). P. 63–81 (in Russian). doi: 10.31857/S0235009224030044

References:

  • Basova O. A. Modeli defektov matricy fotoemissionnyh displeev i metody ih kamuflirovaniya. Diss. kand. tekhn. nauk [Models of defects in the matrix of photoemissive displays and methods for their camouflage. PhD thesis]. Moscow. 2022. 120 p. (In Russian).
  • Bongard M. M., Golubtsov K. V. O tipah gorizontal’nogo vzaimodejstviya, obespechivayushchih normal’noe videnie peremeshchayushchihsya po setchatke izobrazhenij (modelirovanie nekotoryh funkcij zreniya cheloveka) [On some types of horizontal interactions providing normal vision of images moving along the retina (modeling of some human visual functions)]. Biofizika [Biophysics]. 1970. V. 15(2). P. 361–373. (In Russian).
  • Lebedev D. S. Komp’yuternaya model’ seti karlikovyh nejronov v central’noj setchatke [Computer model of a network of dwarf neurons in the central retina]. Sensornye sistemy [Sensory systems]. 2003. V. 17(2). P. 91–106. (In Russian).
  • Lebedev D. S. Model’ mekhanizma raspoznavaniya orientacii 3-polosnyh dvuhgradacionnyh optotipov [A model of orientation recognition mechanisms for the 3-bar two-grade optotypes]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 309–320. (In Russian).
  • Lebedev D. S., Belozerov A. E., Rozhkova G. I. Optotipy dlya tochnoj ocenki ostroty zreniya [The optotypes for an accurate assessment of visual acuity]. Patent RF. No. 2010146806.2012.
  • Lebedev D. S., Byzov A. L. Elektricheskie svyazi mezhdu fotoreceptorami sposobstvuyut vydeleniyu protyazhennyh granic mezhdu raznoyarkimi polyami (Model’ seti fotoreceptorov na geksagonal’noj reshetke) [Electrical connections between photoreceptors contribute to the identification of extended boundaries between fields of different brightness. (Model of a photoreceptor network on a hexagonal lattice)]. Sensornye sistemy [Sensory systems]. 1998. V. 12(3). P. 329–342. (In Russian).
  • Losev I. S., Shura-Bura T. M. Model’ vospriyatiya dvizhushchihsya i nepodvizhnyh ob”ektov [The model of perception of moving and stationary objects]. Biofizika [Biophysics]. 1981. V. 26 (5). P. 854–859. (In Russian).
  • Rozhkova G. I, Gracheva M. A., Lebedev D. S. Optimizaciya testovyh znakov i tablic dlya izmereniya ostroty zreniya [Optimization of test signs and tables for measuring visual acuity]. Conference proceedings “Nevskie gorizonty – 2014”. Saint-Petersburg. 2014. P. 563–567. (In Russian).
  • Rozhkova G. I., Nickolayev P. P., Shchadrin V. E. O faktorah, opredelyayushchih osobennosti vospriyatiya stabilizirovannyh setchatochnyh izobrazhenij [On the factors that determine the peculiarities of stabilized retinal image perception]. Fiziologiya cheloveka [Human Physiology]. 1982. V. 8(4). P. 564–571. (In Russian).
  • Terekhin А. Р., Gracheva M. А., Rozhkova G. I., Lebedev D. S. Interaktivnaya programma dlya ocenki ostroty zreniya na osnove tochnogo izmereniya porogov s ispol’zovaniem tryoh optotipov “Tip-Top” [An interactive program for assessing visual acuity based on precise measurement of thresholds using three Tip-Top optotypes]. State registration certificate № 2015616714. 19.06.2015.
  • Filin V. A. Avtomatiya sakkad [Automaticity of saccades]. Moscow. MSU Press. 2002. 240 p. (In Russian).
  • Kharkevich A. A. Bor’ba s pomekhami [Anti-interference]. Moscow. Nauka. 1965. 276 р. (In Russian).
  • Yarbus A. L. Rol’ dvizhenij glaz v processe zreniya [Eye movements and vision]. Moscow. Nauka. 1965. 166 р. (In Russian).
  • Arend L. E. Spatial differential and integral operations in human vision: implications of stabilized retinal image fading. Psychol. Rev. 1973. V. 80. Р. 374–395.
  • Bridgeman B., Palca J. The role of microsaccades in high acuity observational tasks. Vision Res. 1980. V. 20. Р. 813–817.
  • Cherici C., Kuang X., Poletti M., Rucci M. Precision of sustained fixation in trained and untrained observers. J. Vis. 2012. V. 12(6). Р. 1–16. https://doi.org/10.1167/12.6.31
  • Cornsweet T. N. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 1956. V. 46. Р. 987–988.
  • Curcio C. A., Sloan K. R., Kalina R. E., Hendrickson A. E. Human photoreceptor topography. J. Comp. Neurol. 1990. V. 292(4). P. 497–523. https://doi.org/10.1002/cne.902920402
  • Ditchburn R. W. Eye-movements and visual perception. Oxford. Clarendon Press, 1973.
  • Ditchburn R. W. The function of small saccades. Vision Res. 1980. V. 20. Р. 271–272.
  • Ditchburn R. W., Fender D. H., Mayne S. Vision with controlled movements of the retinal image. J. Physiol. 1959. V. 145(1). Р. 98–107. https://doi.org/10.1113/jphysiol.1959.sp006130.
  • Donner K., Hemilä S. Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research. 2007. V. 47. P. 1166–1177. https://doi.org/10.1016/j.visres.2006.11.024
  • Engbert R. Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. In S. Martinez-Conde S. L. Macknik J.-M. Alonso P. U. Tse. Progress in Brain Research. 2006. V. 154. P. 172–192. https://doi.org/10.1016/S0079-6123(06)54009-9
  • Engbert R., Kliegel R. Microsaccades uncover the orientation of covert attention. Vision Research. 2003. V. 43. P. 1035–1045. https://doi.org/10.1016/S0042-6989(03)00084-1
  • Gerrits H. J., Vendrik A. J. Artificial movements of a stabilized image. Vision Research. 1970. V. 10. P. 1443–1456. https://doi.org/10.1016/0042-6989(70)90094-5
  • Hafed Z. M., Clark J. J. Microsaccades as an overt measure of covert attention shifts. Vision Research. 2002. V. 42. P. 2533–2545. https://doi.org/10.1016/S0042-6989(02)00263-8
  • Holmqvist K., Blignaut P. Small eye movements cannot be reliably measured by video-based P-CR eye-trackers. Behav. Res. 2020. V. 52. Р. 2098–2121. https://doi.org/10.3758/s13428-020-01363-x
  • Intoy J., Rucci M. Finely tuned eye movements enhance visual acuity. Nat Commun. 2020. 11. 795. https://doi.org/10.1038/s41467-020-14616-2
  • Kelly D. H. Motion and vision. I. Stabilized images of stationary gratings. J. Opt. Soc. Am. 1979. V. 69(9). Р. 1266–1274. https://doi.org/10.1364/JOSA.69.001266
  • Kowler E. Eye movements: the past 25 years. Vision Res. 2011. V. 51. Р. 1457–1483. https://doi.org/10.1016/j. visres.2010.12.014
  • Kowler E., Steinman R. M. Miniature saccades: eye movements that do not count. Vision Res. 1979. V. 19. Р. 105–108.
  • Kowler E., Steinman R. M. The role of small saccades in counting. Vision Res. 1977. V. 17. Р. 141–146. https://doi.org/10.1016/0042-6989(77)90212-7
  • Lebedev D. S., Byzov A. L., Govardovskii V. I. Photoreceptor coupling and boundary detection. Vision Research. 1998. V. 38. P. 3161–3169.
  • Lebedev D. S., Marshak D. W. Amacrine cell contributions to red-green color opponency in central primate retina: A model study. Visual Neuroscience. 2007. V. 24(40). Р. 1–13. https://doi.org/10.1017/S0952523807070502
  • Lebedev D. S., Rozhkova G. I., Bastakov V. A., Kim C.-Y., Lee S.-D. Local contrast enhancement for improving screen images exposed to intensive external light. GraphiCon’2009. Conference Proceedings. 19 th International Conference on Computer Graphics and Vision. Moscow State University. 2009. P. 112–116.
  • Martinez-Conde S., Macknik S. L., Hubel D. H. The role of fixational eye movements in visual perception. Nature Reviews Neuroscience. 2004. V. 5. 229–240. https://doi.org/10.1038/nrn1348
  • Otero-Millan J., Troncoso X. G., Macknik S. L., Serrano-Pedraza I., Martinez Conde S. Saccades and microsaccades during visual fixation, exploration and search: Foundations for a common saccadic generator. Journal of Vision. 2008. V. 8(14). Р. 1–18. https://doi.org/10.1167/8.14.21
  • Poletti M., Rucci M. A compact field guide to the study of microsaccades: challenges and functions. Vis. Res. 2016. V. 118. Р. 83–97. https://doi.org/10.1016/j. visres.2015.01.018
  • Ratnam K., Domdei N., Harmening W. M., Roorda A. Benefits of retinal image motion at the limits of spatial vision. J. Vis. 2017. 17(1): 30. Р. 1–11. https://doi.org/10.1167/17.1.30
  • Riggs L. A., Ratliff F., Cornsweet J. C., Cornsweet T. N. The disappearance of steadily fixated visual test objects. J. Opt. Soc. Am. 1953. V. 43. Р. 495–501.
  • Rolfs M. Microsaccades: small steps on a long way. Vision Res. 2009. V. 49. Р. 2415–2441. https://doi.org/10.1016/j. visres.2009.08.010
  • Roorda A., Metha A. B., Lennie P., Williams D. R. Packing arrangement of the three cone classes in primate retina. Vis. Res. 2001. V. 41. Р. 1291–1306. https://doi.org/10.1016/S0042-6989(01)00043-8.
  • Rozhkova G., Lebedev D., Gracheva M., Rychkova S. Optimal optotype structure for monitoring visual acuity. Рroceedings of the Latvian Academy of Sciences. 2017. V. 71. No. 5(710). Р. 327–338. https://doi.org/10.1515/prolas-2017-0057
  • Rozhkova G. I., Nikolaev P. P. Visual percepts in the cases of binocular and monocular viewing stabilized test objects, Ganzfeld stimuli, and prolonged afterimages. Perception. 2015. V. 44(8-9). Р. 952–972. https://doi.org/10.1177/0301006615594957
  • Rozhkova G. I., Nickolayev P. P., Shchadrin V. E. On the factors that determine the peculiarities of stabilized retinal image perception. Human Physiology. 1982а. No. 8. Р. 564–571.
  • Rozhkova G. I., Nickolaev P. P., Shchadrin V. E. Perception of stabilized retinal stimuli in dichoptic viewing conditions. Vision Res. 1982 b. V. 22. N 2. P. 293–302.
  • Rucci M. Fixational eye movements, natural image statistics, and fine spatial vision. Network: Computation in Neural Systems. 2008. V. 19(4). 253–285. https://doi.org/10.1080/09548980802520992
  • Rucci M. Visual encoding with jittering eyes. In Y. Weiss, B. Scholkopf, J. Platt (Eds.). Advances in neural information processing system. 2006. V. 18. Р. 1137–1144.
  • Rucci M., Poletti M. Control and function of fixational eye movements. Annu. Rev. Vis. Sci. 2015. V. 1. Р. 499–518. https://doi.org/10.1146/annurev-vision-082114-035742
  • Tulunay-Keesey U. Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Am. 1960. V. 50. Р. 769–774. https://doi.org/10.1364/JOSA.50.000769
  • Tulunay-Keesey U. Fading of stabilized retinal images. J. Opt. Soc. Am. 1982. V. 72. Р. 440–447. https://doi.org/10.1364/JOSA.72.000440
  • Wade N. How Were Eye Movements Recorded Before Yarbus? Perception. 2015. V. 44(8-9). Р. 851–883. https://doi.org/10.1177/0301006615594947
  • Wade N. J. Why do patterned afterimages fluctuate in visibility? Psychological Bulletin. 1978. V. 85(2). Р. 338–352. https://doi.org/10.1037/0033-2909.85.2.338
  • Westheimer G. The spatial sense of the eye. Proctor lecture. Invest. Ophthalmol. Vis. Sci. 1979. V. 18. Р. 893–912.
  • Whitham E. M, Fitzgibbon S. P, Lewis T. W, Pope K. J, Delosangeles D. et al. Visual experiences during paralysis. Front. Hum. Neurosci. 2011. V. 5. № 160. Р. 1–7. https://doi.org/10.3389/fnhum.2011.00160
  • Winterson B. J., Collewijn H. Microsaccades during finely guided visuomotor tasks. Vision Res. 1976. V. 16. Р. 1387–1390. https://doi.org/10.1016/0042-6989(76)90156-5
  • World Medical Association. Declaration of Helsinki ethical principles for medical research involving human subjects. JAMA. 2013. V. 310(20). P. 2191–2194. https://doi.org/10.1001/jama.2013.281053
  • Yarbus A. L. Eye movements and vision. New York: Plenum Press. 1967.