The aim of this work was to estimate the different features of transient-evoked otoacoustic emission (TEOAE) and
distortion-product otoacoustic emission (DPOAE) of cochlear under conditions of simulated microgravity (21-day “dry”
immersion). The study included 10 healthy male volunteers, aged 23 to 34 years (median age, 30.5 years). TEOAEs and
DPOAEs were measured before the 21-day “dry” immersion, on the 3rd, 7th, 14th and 21st day of exposure and in the
recovery period. The signal-to-noise ratio, dB were evaluated in the stimulation frequency band of 1 kHz – 4 kHz (for
the TEOAE) and in the range from 556 Hz to 4444 Hz – frequencies 556 Hz; 684 Hz; 988 Hz; 1481 Hz; 2222 Hz; 2963 Hz and
4444 Hz (for the DPOAE). The TEOAEs date (n = 10) presented a significant (p ≤0.05) decrease for a stimulation frequency
of 1 kHz. The DPOAEs date (n = 6), presented a pronounced decrease of values for stimulation at frequencies below 1 kHz
(556 Hz; 684 Hz; 988 Hz). Thus, a 21-day “dry immersion” experiment data analysis showed a significant changes in
cochlear function status, demonstrating the reduction in TEOAEs and DPOAEs parameters at below 1 kHz frequency. The
results prove that otoacoustic emission testing of cochlear is the proposed promising noninvasive method for testing the
microgravity-induced intracranial pressure increase observed during spaceflight.
Key words:
transient-evoked otoacoustic emission, distortion-product otoacoustic emission, microgravity, dry immersion,
intracranial pressure
DOI: 10.31857/S0235009222040059
Cite:
Pasekova O. B., Sigaleva E. E., Marchenko L. Yu., Ivanov K. P., Matsnev E. I., Orlov O. I.
Perspektiva ispolzovaniya metoda registratsii razlichnykh klassov otoakusticheskoi emissii dlya dinamicheskoi otsenki sostoyaniya vnutricherepnogo davleniya
[Оtoacoustic emission testing in 21-day dry immersion as prospects for intracranial pressure monitoring].
Sensornye sistemy [Sensory systems].
2022.
V. 36(4).
P. 338–348 (in Russian). doi: 10.31857/S0235009222040059
References:
- Kozlovskaia I.B. Fundamentalinue i prikladnue zadachi immercionnuch issledovanii [Fundamental and applied objectives of investigations in immersion]. Aviakosmicheskay I Ekologicheskay medichina [Aviakosm. Ekolog. Med.]. 2008. T. 42. N 5. P. 3–7 (in Russia).
- Rukavishnikov I.V., Tomilovskaya E.S., Matsnev E.I., Denise P., Avan P. Otoakusticheskay emissiy kak oposredovannui metod ocenki vnutricherepnogo davleniy v usloviych modelirovaniy fiziologicheskich effektov mikrogravitacii [Otoacoustic emission as a mediate method of intracranial pressure assesement under conditions of simulation of microgravity physiological effects]. Aviakosmicheskay i ekologicheskay medichina [Aviakosm. Ekolog. Med.]. 2013. N 47. P. 130–135 (in Russia).
- Tomilovskaya E.S., Rukavishnikov I.V., Amirova L.E., Shigueva T.A., Saveko A.A., Kitov V.V., Vasilyeva G.Yu., Ponomarev S.A., Smirnova T.A., Kozlovskaya I.B., Orlov O.I. 21-sutochnay “suchay” immersiy osobennosti provedeniy i osnovnue itogi [21-day “dry” immersion: features and main results]. Aviakosmicheskay i ekologicheskay medichina [Aviakosm. Ekolog. Med.] 2020. V. 54. № 4. P. 5–14 (in Russia). https://doi.org/10.21687/0233-528X-2020-54-4-5-14
- Shulzhenko E.B. Fiziologicheskie effektu izmenennoi gravitacii [Physiological effects of altered gravity (model experiments in model conditions)]: Dis. … doc. med. sciences. 1975. M.: (in Russia).
- Shulzhenko E.B., Vill-Villiams I.F. Vozmoznocti provedeniy dlitelinoi vodnoi immercii metodom suchogo pogruzeniy [The opportunity to conduct long-term water immersion method dry immersion]. Kosmicheskay biologiy i aviakosmicheskay medichina [Biol. Aerospace. Med.]. 1976. T. 10. N 2. P. 82–84 (in Russia).
- Avan P., Normand H., Giraudet F., Gerenton G., Denise P. Noninvasive in-ear monitoring of intracranial pressure during microgravity in parabolic flights. J. Appl.Physiol. 2018. V. 125. № 2. P. 353–361. https://doi.org/10.1152/japplphysiol.00032.2018
- Beattie R.C., Kenworthy O.T., Luna C.A. Immediate and short-term reliability of distortion-product otoacoustic emissions. Int. J. Audiol. 2003. V. 42. № 6. P. 348–354. https://doi.org/10.3109/14992020309101328
- Bell A. Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hear. Res. 1992. V. 58. P. 91–100. https://doi.org/10.1016/0378-5955(92)90012-c
- Büki B., Avan P., Lemaire J.J., Dordain M., Chazal J., Ribári O. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hear Res. 1996. V. 94. № 2. P. 125–139. https://doi.org/10.1016/0378-5955(96)00015-9
- Büki B., Chomicki A., Dordain M., Lemaire J.J., Wit H.P., Chazal J., Avan P. Middle-ear influence on otoacoustic emissions. II: contributions of posture and intracranial pressure. Hear Res. 2000. V. 140. P. 202–211. https://doi.org/10.1016/s0378-5955(99)00202-6
- Büki B., Giraudet F., Avan P. Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions. Hear Res. 2009. V. 251. № 2. P. 51–59. https://doi.org/10.1016/j.heares.2009.02.004
- Demertzi A., Van Ombergen A., Tomilovskaya E., Jenrissen B., Pechenkova E., Di Perri C., Litvinova L., Amico E., Rumshiskaya A., Rukavishnikov I., Sijbers J., Sinitsyn V., Kozlovskaya I.B., Sunaert S., Parizel P.M., Van de Heyning P.H., Laureys S., Wuyts F.L. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Structure and function. 2016. V. 221. № 5. P. 2873–2876. https://doi.org/10.1007/s00429-015-1054-3
- Frank A.M., Alexiou C., Hulin P., Janssen T., Arnold W., Trappe A.E. Non-invasive measurement of intracranial pressure changes by otoacoustic emissions (OAEs) – a report of preliminary data. Zentralbl Neurochir. 2000. V. 61. № 4. P. 177–180. https://doi.org/10.1055/s-2000-15597
- Harris F.P., Probst R. Otoacoustic emissions and audiometric outcomes // In: Robinette RS, Glattke TJ (eds) Otoacoustic emissions. Clinical applications. New York. 2002. P. 213–242.
- Kemp D.T. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 1978. V. 64. № 5. P. 1386–1391. https://doi.org/10.1121/1.382104
- Lawley J.S., Petersen L.G., Howden E.J., Sarma S., Cornwell W.K., Zhang R., Whitworth L.A., Williams M.A., Levine B.D. Effect of Gravity and Microgravity on Intracranial Pressure. J. Physiol. 2017. V. 595. № 6. P. 2115–2127. https://doi.org/10.1113/JP273557
- Pechenkova E., Nosikova I., Rumshiskaya A., Litvinova L., Rukavishnikov I., Mershina E., Sinitsyn V., Van Ombergen A., Jeurissen B., Jillings S., Laureys S., Sijbers J., Grishin A., Chernikova L., Naumov I., Kornilova L., Wuyts F.L., Tomilovskaya E., Kozlovskaya I.B. Alterations of Functional Brain Connectivity After LongDuration Spaceflight as Revealed by fMRI. Frontiers in Physiology. 2019. V. 10. P. 761: 1–761: 23. https://doi.org/10.3389/fphys.2019.00761
- Thalen E.O., Wit H.P., Segenhout J.M., Albers F.W. Dynamics of Inner Ear Pressure Change Caused by Intracranial Pressure Manipulation in the Guinea Pig. Acta Otolaryngol. 2001. V. 121. P. 470–476.
- Tomilovskaya E., Shigueva T., Sayenko D., Rukavishnikov I., Kozlovskaya I. Dry Immersion as a Ground-Based Model of Microgravity Physiological Effects. Front Physiol. 2019. V. 10. P. 284–289. https://doi.org/10.3389/fphys.2019.00284
- Van Ombergen A., Jillings S., Jeurissen B., Tomilovskaya E., Rumshiskaya A., Litvinova L., Nosikova I., Pechenkova E., Rukavishnikov I., Manko O., Danylichev S., Rühl R. Maxine, Kozlovskaya I.B., Sunaert S., Parizel P.M., Sinitsyn V., Laureys S., Sijbers J., zu Eulenburg P., Wuyts F.L. Brain ventricular volume changes induced by long-duration spaceflight. Proc. Natl. Acad. Sci. USA. 2019. V. 116. № 21. P. 10531–10536. https://doi.org/10.1073/pnas.1820354116
- Voss S.E., Horton N.J., Tabucchi T.H., Folowosele F.O., Shera C.A. Posture-induced changes in distortionproduct otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit. Care. 2006. V. 4. № 3. P. 251–157. https://doi.org/10.1385/NCC:4: 3:251
- Wilson J.P. Evidence for a Cochlear Origin for Acoustic ReEmissions, Threshold Fine-Structure and Tonal Tinnitus. Hear Res. 1980. V. 2. № 3. P. 233–252. https://doi.org/10.1016/0378-5955(80)90060-x