• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Interaction of foveal and peripheral vision in the implementation of systemic visual functions

© 2021 L. N. Podladchikova, D. G. Shaposhnikov, A. I. Samarin, D. M. Lazurenko

Research Center of Neurotechnology at Southern Federal University 344090 Rostov-on-Don, Stachki Ave., 194, Russia

Received 14 Dec 2020

The article analyzes the known facts deal with the reflection of systemic functions of vision, such as discrimination and recognition of visual objects, visual search, assessment of emotions, scene content, and decisionmaking in the foveal and peripheral visual fields. The well-known assumptions about the possible mechanisms of functional phenomena found in peripheral vision are considered. A new neuroinformational approach to solving the problems of interaction between foveal and peripheral vision based on trajectories of examination, areas of interest and return fixations of the gaze is proposed. Computational experiments were shown that the structure of the model inspection trajectory correlates with the number of return fixations of the model's “entry window”. This fact made it possible to assume that the probability of recurrent fixations can be considered as a quantitative criterion for determining the type of attention (focal or spatial) and the moment of its switching.

Key words: foveal and peripheral vision, return fixations, neuroinformatic approach, scan-path

DOI: 10.31857/S0235009221040053

Cite: Podladchikova L. N., Shaposhnikov D. G., Samarin A. I., Lazurenko D. M. Vzaimodeistvie fovealnogo i perifericheskogo zreniya pri realizatsii sistemnykh zritelnykh funktsii [Interaction of foveal and peripheral vision in the implementation of systemic visual functions]. Sensornye sistemy [Sensory systems]. 2021. V. 35(4). P. 328–339 (in Russian). doi: 10.31857/S0235009221040053

References:

  • Barabanshhikov V.A. Okulomotornye struktury vosprijatija [Oculomotor structures of perception]. M.: Institut psihologii RAN, 1997. 384 p. (in Russian).
  • Velichkovskij B.M. Kognitivnaja nauka: osnovy psihologii poznanija [Cognitive science: fundamentals of cognition psychology]: v 2 t. M.: Akademija, 2006. 405 p. (in Russian).
  • Iomdina E.N., Selina O.M., Rozhkova G.I., Belokopytov A.V., Ershov E.I. Kontaktnaya linza s implantirovannym okklyuderom kak sredstvo dlya otsenki dalnego perifericheskogo zreniya v estestvennykh usloviyakh [Contact lens with implanted occluder as a tool for assessment of far peripheral vision in natural viewing conditions]. Sensornye sistemy [Sensory systems]. 2020. V. 34 (2). P. 100–106 (in Russian). https://doi.org/10.31857/S0235009220020043
  • Podvigin N.F., Makarov F.N., Shelepin Ju.E. Jelementy strukturno-funkcional'noj organizacii zritel'no-glazodvigatel'noj sistemy [Elements of the structural and functional organization of the visual-oculomotor system]. SPb.: Nauka, 1986. 251 p. (in Russian).
  • Podladchikova L.N., Koltunova T.I., Samarin A.I., Petrushan M.V., Shaposhnikov D.G., Lomakina O.V. Sovremennyye predstavleniya o mekhanizmakh zritel'nogo vnimaniya [Modern concepts of the mechanisms of visual attention]. Rostov-on-Don: SFedU Publishing House, 2017. 168 p. (in Russian).
  • Rozhkova G.I., Belokopytov A.V., Gracheva М.А., Zagadki slepoj zony i koltza povyshennioj plotnosti kolbochek na krajnej periferii setchatki [Riddles of the blind zone and the ring of increased cone density on the extreme periphery of the retina]. Sensornye sistemy [Sensory systems]. 2016. V. 30 (4). P. 263–281 (in Russian).
  • Rozhkova G.I., Belokopytov A.V., Iomdina E.N., Sovremennye predstavlenija o specifike perifericheskogo zrenija cheloveka. [Modern views about specification of human peripheral vision]. Sensornye sistemy [Sensory systems]. 2019. 33 (4). P. 306–332 https://doi.org/10.1134/S0235009219040073 (in Russian).
  • Rozhkova G.I., Jarbus A.L. Osobennosti vosprijatija chelovekom obyektov v uslovijah raboty ogranichennyh central'nyh uchastkov setchatki. [Features of human object perception in the conditions of confinement central areas of the retina] Fiziologija cheloveka [Human Physiology]. 1977. V. 3 (6). P. 1119–1127 (in Russian).
  • Samarin A.I. Podladchikova L.N., Petrushan M.V., Shaposhnikov D.G., Gavriley Y.K. Algoritmy aktivnogo prostranstvenno-neodnorodnogo zrenija [Algorithms of active spatial-heterogeneity vision]. Rostovon-Don: SFedU Publishing House, 2020. 104 p. (in Russian)
  • Hubel D. Glaz, mozg, zrenie [Eye, brain, vision]. M.: Mir, 1990. 240 p. (in Russian)
  • Yarbus A.L. Rol'dvizhenij glaz v processe zrenija [Role of eye-movements in vision]. M.: Nauka, 1965. 166 p. (in Russian).
  • Yarbus A.L., Rozhkova G.I. Osobennosti vosprijatija obyektov na periferii polja zrenija. [Features of object perception on vision field periphery]. Sensornye sistemy [Sensory systems]. SPb., 1977. P. 64–73 (in Russian).
  • Anstis S.M. A chart demonstrating variations in acuity with retinal position. Vision Research. 1974. V. 14. № 7. P. 589–592. https://doi.org/10.1016/0042-6989(74)90049-2
  • Baddeley R.J., Tatler B.W. High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis. Vision research. 2006. V. 46. № 18. P. 2824–2833. https://doi.org/10.1016/j.visres.2006.02.024
  • Baveye Y., Dellandrea E., Chamaret C., & Chen L. LIRISACCEDE: A Video Database for Affective Content Analysis. IEEE Transactions on Affective Computing. 2015. V. 6. № 1. P. 43–55. https://doi.org/10.1109/TAFFC.2015.2396531
  • Burnat K. Are visual peripheries forever young? Neural Plasticity. 2015. V. 15. Art. 307929. https://doi.org/10.1155/2015/307929
  • Cajar A. Eye-movement control during scene viewing: the roles of central and peripheral vision. PhD dissertation. Universität Potsdam, Humanwissenschaftliche Fakultät, Potsdam, 2016. 145 p.
  • Cajar A., Engbert R., Laubrock J. Spatial frequency processing in the central and peripheral visual field during scene viewing. Vision Research. 2016. V. 127. P. 186–197. https://doi.org/10.1016/j.visres.2016.05.008
  • Cajar A., Schneeweiß P., Engbert R., Laubrock J. Coupling of atten-tion and saccades when viewing scenes with central and peripheral degradation. Journal of Vision. 2016. V. 16. № 2. P. 8–12. https://doi.org/10.1167/16.2.8
  • Calvo M.G., Fernandez-Martin A., Nummenmaa L. Facial expression recognition in peripheral versus central vision: role of the eyes and the mouth. Psychological research. 2014. V. 78. № 2. P. 180–195. https://doi.org/10.1007/s00426-013-0492-x
  • Carrasco M. Visual attention: the past 25 years. Vision Research. 2011. V. 51. P. 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012
  • Chambers C.D., Allen C.P.G., Maizey L., & Williams M.-A. (2013). Is delayed foveal feedback critical for extra-foveal perception? Cortex. 2013. V. 49. № 1. P. 327–335. https://doi.org/10.1016/j.cortex.2012.03.007
  • Cornelissen F.W., Bruin K.J., Kooijman C. Eye movements during search with artificial scotomas. Optometry and Vision Science. 2005. V. 82 №1. P. 27–35.
  • De Weerd P. Perceptual filling-in: more than the eye can see. Progress in Brain Research. 2006. V. 154. P. 227–245. https://doi.org/10.1016/s0079-6123(06)54012-9
  • Foulsham T., Kingstone A. Modelling the influence of central and peripheral information on saccade biases in gaze-contingent scene viewing. Visual Cognition. 2012. V. 20. № 4–5. P. 546–579. https://doi.org/10.1080/13506285.2012.680934
  • Germeys F., Graef P., Eccelpoel C., & Verfaillie K. The visual analog: Evidence for a preattentive representation across saccades. Journal of Vision. 2010. V. 10. № 10: 9. P. 1–28. https://doi.org/10.1167/10.10.9
  • Gloriani A.H., & Schütz A.C. Humans trust central vision more than peripheral vision even in the dark. Current Biology. 2019. V. 29. № 7. P. 1206–1210.e4. https://doi.org/10.1016/j.cub.2019.02.023
  • Hennig M., Wörgötter F. Eye micro-movements improve stimulus detection beyond the Nyquist limit in the peripheral retina. Advances in neural information processing systems. 2003. V. 16. P. 1475–1482.
  • Higgins E., & Rayner, K. Transsaccadic processing: stability, integration, and the potential role of remapping. Attention, Perception, & Psychophysics. 2014. V. 77. № 1. P. 3–27. https://doi.org/10.3758/s13414-014-0751-y
  • Hughes A.E., Southwell R.V., Gilchrist I.D., Tolhurst D.J. Quantifying peripheral and foveal perceived differences in natural image patches to predict visual search performance. Journal of vision. 2016. V. 16. № 10. P. 18–19. https://doi.org/10.1167/16.10.18
  • Irwin D., Zacks J., & Brown J. Visual memory and the perception of a stable visual environment. Perception & Psychophysics. 1990. V. 47. № 1. P. 35–46. https://doi.org/10.3758/BF03208162
  • Kragic D., Bjorkman M. Strategies for object manipulation using foveal and peripheral vision. Fourth IEEE Intern. Conf. Comp. Vision Systems. 2006. P. 50–52.
  • Kuraguchi K., Ashida H. Beauty and cuteness in peripheral vision. Frontiers in psychology. 2015. V. 6. P. 566–569. https://doi.org/10.3389/fpsyg.2015.00566
  • Larson A.M., Loschky L.C. The contributions of central versus peripheral vision to scene gist recognition. Journal of Vision. 2009. V. 9. № 10. P. 1–16. https://doi.org/10.1167/9.10.6
  • Laubrock J., Cajar A., Engbert R. Control of fixation duration during scene viewing by interaction of foveal and peripheral processing. Journal of Vision. 2013. V. 13. № 12. P. 11–15. https://doi.org/10.1167/13.12.11
  • Lomakina O., Podladchikova L., Shaposhnikov D., Koltunova T. Spatial and temporal parameters of eye movements during viewing of affective images. Advances in Intelligent Systems and Computing. 2016. V. 449. P. 127–133. https://doi.org/10.1007/978-3-319-32554-5_17
  • Levi D.M. Crowding–An essential bottleneck for object recognition: A mini-review. Vision research. 2008. V. 48. № 5. P. 635–654. https://doi.org/10.1016/j.visres.2007.12.009
  • Loschky L.C., Nuthmann A., Fortenbaugh F.C., Levi D.M. Scene perception from central to peripheral vision. Journal of vision. 2017. V. 17. № 1. P. 6–8. https://doi.org/10.1167/17.1.6
  • Loschky L.C., Szaffarczyk S., Beugnet C., Young M.E., Boucart M. The contributions of central and peripheral vision to scene-gist recognition with a 180° visual field. Journal of Vision. 2019. V. 15. № 12. P. 1–21. https://doi.org/10.1167/19.5.15
  • Ludwig C.J.H., Davies J.R., Eckstein M.P. Foveal analysis and peripheral selection during active visual sampling. Proceedings of the National Academy of Sciences. 2014. V. 111. № 2. P. E291–E299. https://doi.org/10.1073/pnas.1313553111
  • McCamy M.B., Otero-Millan J., Macknik S.L., Yang Y., Troncoso X.G., Baer S.M., Crook S.M., MartinezConde S. Microsaccadic efficacy and contribution to foveal and peripheral vision. J. Neurosci. 2012. V. 32. № 27. P. 9194–9204. https://doi.org/10.1523/JNEUROSCI.0515-12.2012
  • Parkhurst D.J., Niebur E. Variable-resolution displays: A theoretical, practical, and behavioral evaluation. Human Factors. 2002. V. 44. № 4. P. 611–615.
  • Podladchikova L., Shaposhnikov D., Koltunova T., Lazurenko D., Kiroy V. Spatial and temporal properties of gaze return fixations while viewing affective images. Advances in Applied Physiology. 2020. V. 5. № 2. P. 42–47. https://doi.org/10.11648/j.aap.20200502.16
  • Podladchikova L.N., Shaposhnikov D.G., Kozubenko E.A. Towards neuroinformatic approach for second-person neuroscience. Stud.Computat. Intelligence. 2021a. V. 925. P. 143–148. https://doi.org/10.1007/978-3-030-60577-3_16
  • Shaposhnikov D., Podladchikova L., Lazurenko D., Kiroy V., Search for guantitative prameters of scan path of image viewing by biologically motivated model. Advances in Applied Physiology. 2021b. V. 6. № 1. P. 9–13. https://doi.org/10.11648/j.aap.20210601.12
  • Podladchikova L.N., Shaposhnikov D.G., Koltunova T.I. Spatial and temporal properties of gaze return fixations while viewing affective images. Russian Journal of Physiology. 2018. V. 104. № 2. P. 245–254 (in Russian). https://rusjphysiol.org/index.php/rusjphysiol/article/view/242/44
  • Podladchikova L.N., Shaposhnikov D.G., Tikidgji-Hamburyan A.V., Koltunova T.I., Tikidgji-Hamburyan R.A., Gusakova V.I., Golovan A.V. Model-based approach to sudy of mechanisms of complex image viewing. Optical Memory and Neural Networks. 2009. V. 18. № 2. P. 114–121. https://doi.org/10.3103/S1060992X09020088
  • Pointer J., Hess R. The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range. Vision Research. 1989. V. 29. № 9. P. 1133–1151. https://doi.org/10.1016/0042-6989(89)90061-8
  • Privitera C.M., Stark L.W. Scanpath theory, attention, and image processing algorithms for predicting human eye fixations. Neurobiol. Attention. 2005. P. 296–299.
  • Reingold E.M., Reichle E.D., Glaholt M.G., Sheridan H. Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive psychology. 2012. V. 65. № 2. P. 177–206. https://doi.org/10.1016/j.cogpsych.2012.03.001
  • Ringer R.V., Throneburg Z., Johnson A.P., Kramer A.F., Loschky L.C. Impairing the useful field of view in natural scenes: Tunnel vision versus general interference. Journal of Vision. 2016. V. 16. № 2. P. 7–9. https://doi.org/10.1167/16.2.7
  • Rosenholtz R. Capabilities and limitations of peripheral vision. Annual Review of Vision Science. 2016. V. 2. P. 437–457. https://doi.org/10.1146/annurev-vision-082114- 035733
  • Ryu D., Abernethy B., Mann D.L., Poolton J.M., Gorman A.D. The role of central and peripheral vision in expert decision making. Perception. 2013. V. 42. P. 591–607. https://doi.org/10.1068/p7487
  • Samarin A., Koltunova T., Osinov V., Shaposhnikov D., Podladchikova L. Scanpaths of complex image viewing: insights from experimental and modeling studies. Perception. 2015. V. 44. № 8–9. P. 1064–1076. https://doi.org/10.1177/0301006615596872
  • Samarin A.I., Podladchikova L.N., Petrushan M.V., Shaposhnikov D.G. Active vision: from theory to application. Optical Memory and Neural Networks. 2019. V. 28. № 3. P. 185–191. https://doi.org/10.3103/S1060992X19030068
  • Samarin A., Koltunova T., Osinov V., Shaposhnikov D., Podladchikova L. Scanpaths of complex image viewing: insights from experimental and modeling studies. Perception. 2015. V. 44. № 8–9. P. 1064–1076. https://doi.org/10.1177/0301006615596872
  • Shaposhnikov D.G., Gizatdinova Yu.F., Podladchikova L.N. The peculiarities of the visual perception in the peripheral vision field. Pattern Recognition and Image Analysis. 2001. V. 11. № 2. P. 376–378.
  • Stephenson C.M., Knapp A.J., Braddick O.J. Discrimination of spatial phase shows a qualitative difference between foveal and peripheral processing. Vision Research. 1991. V. 31. № 7–8. P. 1315–1326. https://doi.org/10.1016/0042-6989(91)90053-8
  • Stewart E.E.M., Valsecchi M., Schütz A.C. A review of interactions between peripheral and foveal vision. Journal of Vision. 2020. V. 20. № 12: 2. P. 1–35. https://doi.org/10.1167/jov.20.12.2
  • Strasburger H., Rentschler I., Jüttner M. Peripheral vision and pattern recognition: A review. Journal of Vision. 2011. V. 11. № 5. P. 13. https://doi.org/10.1167/11.5.13
  • Tanrıkulu O.D., Chetverikov A., Kristjansson A. Encoding perceptual ensembles during visual search in peripheral vision. J. Vision. 2020. V. 20. № 8. P. 20–22. https://doi.org/10.1167/jov.20.8.20
  • To M.P.S., Gilchrist I.D., Troscianko T., Tolhurst D.J. Discrimination of natural scenes in central and peripheral vision. Vision Research. 2011. V. 51. № 14. P. 1686–1698. https://doi.org/10.1016/j.visres.2011.05.010
  • Torralba A., Oliva A., Castelhano M.S., Henderson J.M. Contextual guidance of eye movements and attention in realworld scenes: the role of global features in object search. Psychological review. 2006. V. 113. № 4. P. 766–769. https://doi.org/10.1037/0033-295X.113.4.766
  • Trukenbrod H.A., & Engbert R. ICAT: A computational model for the adaptive control of fixation durations. Psychonomic bulletin & review. 2014. V. 21. № 4. P. 907–934. https://doi.org/10.3758/s13423-013-0575-0
  • Van Diepen P., d'Ydewalle G. Early peripheral and foveal processing in fixations during scene perception. Visual Cognition. 2003. V. 10. № 1. P. 79–100. https://doi.org/10.1080/713756668
  • Wiecek E.W., Pasquale L.R., Fiser J., Dakin S., Bex P.J. Effects of peripheral visual field loss on eye movements during visual search. Frontiers in Psychology. 2012. V. 3. P. 472–475. https://doi.org/10.3389/fpsyg.2012.00472
  • Yu Q., Shim W.M. Modulating foveal representation can influence visual discrimination in the periphery. J.Vision. 2016. V. 16. № 3. P. 15–19. https://doi.org/10.1167/16.3.15