• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Auditory detection and classification of amplitude modulation: psychophysical and electrophysiological data

© 2016 N. G. Bibikov

JSC Andreev Acoustical Institute, 117036 Moscow, Shvernik st., 4

Received 04 Jun 2015

The analysis of psychophysical data relevant to the detection of sinusoidal amplitude modulation and determination of its period is provided. Significant and not yet fully investigated adaptation processes cause a significant decrease of the modulation thresholds during a few seconds of continuous stimulus. An even greater impact on the detection and classification thresholds can cause the directed training. Detection of modulation can be provided in wide frequency bands, as evidenced by the ability of a person to detect the presence of synchronicity in different frequency bands, as well as the phenomenon of comodulation masking release. Physiological studies (most of which were performed on amphibians) also demonstrate the important role of adaptation to the mean level of the current signal during the process of detection and classification amplitude changes. Role of directed training is only beginning to be explored by physiological methods. Nevertheless, the first results already suggest that in this way it could be not only justify specific psychophysical data, but also reveal important principles of functioning of the sensory systems and processes of memorizing.

Key words: amplitude modulation, psychophysics, short-term and long-term adaptation, training, auditory processing

Cite: Bibikov N. G. Mekhanizmy obnaruzheniya i klassifikatsii amplitudnoi modulyatsii: psikhofizicheskie i elektrofiziologicheskie dannye [Auditory detection and classification of amplitude modulation: psychophysical and electrophysiological data]. Sensornye sistemy [Sensory systems]. 2016. V. 30(2). P. 122-135 (in Russian).

References:

  • Bachtin G.A., Bibikov N.G. Variation of the sensitivity to interruption of a sound signal during the adaptation of the frog's auditory system// Sov. Phys. Acoust. 1974. V. 19. P. 614–616 [in Russian]).
  • Bibikov N.G. Adaptation processes in the auditory system of the frog // Biofisics 2004. V. 49 (1). P. 107–120. [in Russian]).
  • Bibikov N.G. Responses of neurons located in the frog auditory pathway to tones , amplitude modulated by two low- frequency sinusoids // Sensory systems. 2008. V. 21(3). P. 179–193 [in Russian]).
  • Bibikov N.G. Neurophysiological mechanisms of auditory adaptation I. adaptation during stimulation //Advances in physiological sciences 2010. V. 41(3). P. 72–91 [in Russian]).
  • Bibikov N.G. Adaptation of differential sensitivity of auditory system neurons to amplitude modulation after abrupt change of signal level//J. Evol. Bioch. Physiol. 2013. V. 49(1). P. 44–55 [in Russian]).
  • Bibikov N.G. On the issue of cross-correlation of impulse activity of neurons in the auditory pathway (analytical review) //Sensorу Systems. 2015. V. 29(1). P. 3–12 [in Russian]).
  • Bibikov N.G., Grubnik O.N. Enhancement of neural discharge synchronization with stimulus envelope in the course of long-term adaptation// Sensory Systems. 1996. V.10(1). P. 5–18 [in Russian]).
  • Bibikov N.G., Ishshenko S.M. Detection of the periodicity in the presence of noise modulation // Psychophysics Today. 2006. P. 247–254 [in Russian]).
  • Bibikov N.G., Makeeva I.P. Auditory adaptation and AM detection thresholds // Sov. Phys. Acoust. 1989. V. 35(6). P. 1004–1010 [in Russian]).
  • Dubrovsky N.A., Tumarkina L.N., Freydin A.A. Effect of the training on the assessment of the critical band by phase method// Reports of USSR Academy of Science. 1966. V. 172. P. 447–450 [in Russian]).
  • Tumarkina L.N., Dubrovsky N.A. Some characteristics of human perception of amplitude- modulated signals// Biophisics. 1966. V. 11. P. 653– 658 [in Russian]).
  • Freydin A.A. Critical band in hearing. Measurement of the critical bands by different methods // Sov. Phys. Acoust. 1975. V. 21. P. 806–814 [in Russian]).
  • Bacon S.P., Viemeister N.F. Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners // Intern. J. Audiol. 1985. V. 24(2). P. 117– 134.
  • Bar-Yosef O., Rotman Y., Nelken I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context // J. Neuroscience. 2002. V. 22(19). P. 8619–8632.
  • Beitel R.E., Schreiner C.E., Cheung S.W., Wang X., Mer- zenich M.M. Reward-dependent plasticity in the prima- ry auditory cortex of adult monkeys trained to discrimi- nate temporally modulated signals // Proc. Nat. Acad. Science. 2003. V. 100(19). P. 11070–11075.
  • Bekesy G. Zur Teorie des Hores // Physical Zeitschrift. 1929. V. 30(1). P. 115–125.
  • Bibikov N.G. Neural coding of amplitude modulation adapts to the stimulus parameters//2008. Abstract View- er/Itinerary Planner. Washington, DC: Society for Neu- roscience CD/ Program No. 664.9/JJ31 2008. http:// www.abstractsonline.com/Plan/SSResults.aspx.2008.
  • Bibikov N.G. Nizamov S.V. Temporal coding of low-fre- quency amplitude modulation in the torus semicircu- laris of the grassfrog // Hear. Res. 1996. V. 101(1). P. 23–44.
  • Bibikov N.G. Addition of noise enhanced neural synchro- ny to amplitude-modulated sounds in the frog's mid- brain // Hear. Res. 2002. V.173(1). P. 21–28.
  • Biebel U.W., Tomlinson W., Bibikov N.G., Langner G. Re- sponses to low-modulation depth tones in single units of inferior colliculus in the alert chinchilla // Gottingen Neurobiology Report / Ed. N.Elsner, R Wehner. Georg Thieme Verlag. Stuttgart-N.Y. 1998. P. 344.
  • Bronkhorst A.W. The cocktail party phenomenon: A re- view of research on speech intelligibility in multiple- talker conditions // Acta Acustica United With Acus- tica. 2000. V. 86(1). P. 117–128.
  • Busby P.A., Tong Y.C., Clark G.M. The perception of tem- poral modulations by cochlear implant patients // J. Acoust. Soc. Am. 1993. V. 94(1). P. 124–131.
  • Buus S. Release from masking caused by envelope fluc- tuations // J. Acoust. Soc. Am. 1985. V. 78(6). P. 1959– 1965.
  • Buss E. Spectral profile cues in comodulation masking re- lease // J. Acoust. Soc. Am. 2010. V. 127(6). P. 3614– 3628.
  • Buss E., Hall III J.W., Grose J.H. Monaural envelope cor- relation perception for bands narrower or wider than a critical band // J. Acoust. Soc. Am. 2013. V. 133(1). P. 405–416.
  • Buss E., Dai H., Hall III J.W. Effect of stimulus bandwidth and duration on monaural envelope correlation percep- tion // J. Acoust. Soc. Am. 2015. V. 137(1). P. EL51- EL57.
  • Cohen M.F., Schubert E.D. Influence of place synchrony on detection of a sinusoid // J. Acoust. Soc. Am. 1987. V. 81(2). P. 452–458.
  • Dau T., Verhey J., Kohlrausch A. Intrinsic envelope fluc- tuations and modulation-detection thresholds for nar- row-band noise carriers // J. Acoust. Soc. Am. 1999. V. 106(5). P. 2752–2760.
  • Dean I., Harper N.S., McAlpine D. Neural population cod- ing of sound level adapts to stimulus statistics // Nature Neurosci. 2005. V. 8(12). P. 1684–1689.
  • Eddins D.A. Amplitude modulation detection of narrow- band noise: Effects of absolute bandwidth and frequen- cy region // J. Acoust. Soc. Am. 1993. V. 93(1). P. 470– 479.
  • Eddins D. A. Amplitude-modulation detection at low-and high-audio frequencies // J. Acoust. Soc. Am. 1999. V. 105. No 2. P. 829–837.
  • Ewert S.D., Verhey J.L., Dau T. Spectro-temporal process- ing in the envelope-frequency domain // J. Acoust. Soc. Am. 2002. V. 112(6). P. 2921–2931.
  • Fitzgerald M.B., Wright B.A. Perceptual learning and gen- eralization resulting from training on an auditory am- plitude-modulation detection task // J. Acoust. Soc. Am. 2011. V. 129(2). P. 898–906.
  • François C., Schön D. Neural sensitivity to statistical reg- ularities as a fundamental biological process that un- derlies auditory learning: the role of musical practice // Hear. Res. 2014. V. 308. P. 122–128.
  • Fu Q.J. Temporal processing and speech recognition in cochlear implant users // Neuroreport. 2002. V. 13(13). P. 1635–1639.
  • Goense J.B.M., Feng A.S. Effects of noise bandwidth and amplitude modulation on masking in frog auditory mid- brain neurons // PloS one. 2012. V. 7(2). P. e31589.
  • Grant K.W., Summers V., Leek M.R. Modulation rate de- tection and discrimination by normal-hearing and hear- ing-impaired listeners // J. Acoust. Soc. Am. 1998. V. 104(2). P. 1051–1060.
  • Grose J.H. Buss E., Porter H.L., Hall III J.W. Across-fre- quency envelope correlation discrimination and masked signal detection // J. Acoust. Soc. Am. 2013. V. 134(2). P. 1205–1214.
  • Hall J.W. The effect of across-frequency differences in masking level on spectro–temporal pattern analysis // J. Acoust. Soc. Am. 1986. V. 79(3). P. 781–787.
  • Hall J.W., Grose J.H. Comodulation masking release: Ev- idence for multiple cues // J. Acoust. Soc. Am. 1988. V. 84(5). P. 1669–1675.
  • Hall J.W., Grose J.H. Monaural envelope correlation perception in listeners with normal hearing and co- chlear impairment // J. Speech Lang. Hear. Res. 1993. V. 36(6). P. 1306–1314.
  • Hanna T.E. Discrimination and identification of modu- lation rate using a noise carrier // J. Acoust. Soc. Am. 1992. V. 91(4). P. 2122–2128.
  • Houtgast T. Frequency selectivity in amplitude-modula- tion detection // J. Acoust. Soc. Am. 1989. V. 85(4). P. 1676–1680.
  • Hsieh I. H., Saberi K. Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum// Hear. Res. 2010. V. 262(1). P. 9–18.
  • Johnson D.H., Kiang N.Y. Analysis of discharges record- ed simultaneously from pairs of auditory nerve fibers // Biophysical Journal. 1976. V. 1(7). P. 719–725.
  • Johnson S.L., Beurg M., Marcotti W., Fettiplace R. Pres- tin-driven cochlear amplification is not limited by the outer hair cell membrane time constant //Neuron. 2011. V. 70(6). P. 1143–1154.
  • Joris P.X., Schreiner C.E., Rees A. Neural processing of amplitude-modulated sounds // Physiol. Rev. 2004. V. 84. P. 541–577.
  • Kim D.O., Zahorik P., Carney L.H., Bishop B.B., Kuwa- da S. Auditory distance coding in rabbit midbrain neu- rons and human perception: monaural amplitude modu- lation depth as a cue // J. Neuroscie. 2015. V. 35(13). P. 5360–5372.
  • Kohlrausch A., Fassel R., Dau T. The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers // J. Acoust. Soc. Am. 2000. V. 108(2). P. 723–734.
  • Malone B.J., Scott B.H., Semple M.N. Encoding frequency contrast in primate auditory cortex // J. Neurophysiol. 2014. V. 111. P. 2244–2263.
  • Malone B.J., Beitel R.E., Vollmer M., Heiser M.A., Schreiner C.E. Modulation-frequency-specific adapta- tion in awake auditory cortex // J. Neuroscience. 2015. V. 35(15). P. 5904–5916.
  • Marshall L., Carpenter S. Hearing Levels of 416 Sonar Technicians // Naval Submarine Medical research labo- ratory. Techn. Rep. 1988. P. 1–22.
  • Mauk M.D., Buonomano D.V. The neural basis of tem- poral processing // Annu. Rev. Neurosci. 2004. V. 27. P. 307–340.
  • McFadden D. Comodulation masking release: Effects of varying the level, duration, and time delay of the cue band // J. Acoust. Soc. Am. 1986. V. 80(6). P. 1658– 1667.
  • McFadden D. Comodulation detection differences us- ing noise-band signals // J. Acoust. Soc. Am. 1987. V. 81(5). P. 1519–1527.
  • Moore B.C.J. Comodulation masking release: spectro- temporal pattern analysis in hearing // British J. Audi- ology. 1990. V. 24(2). P. 131–137.
  • Moore B.C.J., Emmerich D.S. Monaural envelope cor- relation perception, revisited: Effects of bandwidth, frequency separation, duration, and relative level of the noise bands // J. Acoust. Soc. Am. 1990. V. 87(6). P. 2628–2633.
  • Moore B.C.J., Shailer M.J., Schooneveldt G.P. Temporal modulation transfer functions for band-limited noise in subjects with cochlear hearing loss // British J. Audiol- ogy. 1992. V. 26(4). P. 229–237.
  • Moore B.C.J., Raab D.H. Pure-tone intensity discrimi- nation: some experiments relating to the “near-miss” to Weber’s law // J. Acoust. Soc. Am. 1974. V. 55(5). P. 1049–1054.
  • Nieder A., Klump G.M. Signal detection in amplitude- modulated maskers. II. Processing in the songbird’s au- ditory forebrain // Europ. J. Neurosci. 2001. V. 13(5). P. 1033–1044.
  • Niwa M., Johnson J.S., O’Connor K.N., Sutter M.L. Ac- tive engagement improves primary auditory cortical neurons’ ability to discriminate temporal modulation // J. Neurosci. 2012. V. 32. P. 9323–9334.
  • Niwa M., Johnson J.S., O’Connor K.N., Sutter M.L. Dif- ferences between primary auditory cortex and auditory belt related to encoding and choice for AM sounds // J. Neuroscience. 2013. V. 33(19). P. 8378–8395.
  • Niwa M., O’Connor K.N., Engall E., Johnson J.S., Sut- ter M.L. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex // J. Neurophysiol. 2015. V. 113(1). P. 307–327.
  • Patterson R.D., Johnson-Davies D., Milroy R. Amplitude- modulated noise: The detection of modulation versus the detection of modulation rate // J. Acoust. Soc. Am. 1978. V. 63(6). P. 1904–1911.
  • Piechowiak T., Ewert S. D., Dau T. Modeling comodula- tion masking release using an equalization-cancella- tion mechanism // J. Acoust. Soc. Am. 2007. V. 121(4). P. 2111–2126.
  • Pressnitzer D., Meddis R., Delahaye R., Winter I.M. Phys- iological correlates of comodulation masking release in the mammalian ventral cochlear nucleus // J. Neurosci- ence. 2001. V. 21(16). P. 6377–6386.
  • Richards V.M. Monaural envelope correlation perception // J. Acoust. Soc. Am. 1987. V. 82(5). P. 1621–1630.
  • Riesz R.R. Differential intensity sensitivity of the ear for pure tones // Phys. Rev. 1928. V. 31. P. 867–875.
  • Sarro E.C., von Trapp G., Mowery T.M., Kotak V.C., Sa- nes D.H. Cortical synaptic inhibition declines dur- ing auditory learning // J. Neurosci. 2015. V. 35(16). P. 6318–6325.
  • Schneider P., Scherg M., Dosch H.G., Specht H.J., Guts- chalk A., Rupp A. Morphology of Heschl’s gyrus re- flects enhanced activation in the auditory cortex of mu- sicians // Nature Neurosci. 2002. V. 5(7). P. 688–694.
  • Schnupp J.W., Hall T.M., Kokelaar R.F., Ahmed B. Plastic- ity of temporal pattern codes for vocalization stimuli in primary auditory cortex // J. Neurosci. 2006. V. 26. P. 4785–4795.
  • Shannon R.V. Temporal modulation transfer functions in patients with cochlear implants // J. Acoust. Soc. Am. 1992. V. 91(4). P. 2156–2164.
  • Skoe E., Kraus N. A little goes a long way: how the adult brain is shaped by musical training in childhood // J. Neurosci. 2012. V. 32. P. 11507–11510.
  • Strickland E.A. The effects of frequency region and lev- el on the temporal modulation transfer function // J. Acoust. Soc. Am. 2000. V. 107(2). P. 942–952.
  • Verhey J.L., Pressnitzer D., Winter I.M. The psychophys- ics and physiology of comodulation masking release // Exper. Brain Res. 2003. V. 153(4). P. 405–417.
  • Viemeister N.F. Temporal modulation transfer functions based upon modulation thresholds // J. Acoust. Soc. Am. 1979. V. 66. P. 1364–1380.
  • Wen B., Wang G.I., Dean I., Delgutte B. Dynamic range ad- aptation to sound level statistics in the auditory nerve // J. Neurosci. 2009. V. 29(44). P. 13797–13808.
  • Wojtczak M., Nelson P.C., Viemeister N.F., Carney L.H. Forward masking in the amplitude-modulation domain for tone carriers: psychophysical results and physio- logical correlates // J. Assoc. Res. Otolaryngol. 2011. V. 12. P. 361–373.
  • Wright B.A., Dai H. Detection of sinusoidal amplitude modulation at unexpected rates // J. Acoust. Soc. Am. 1998. V. 104(5). P. 2991–2996.
  • Xiang J., Poeppel D., Simon J.Z. Physiological evidence for auditory modulation filterbanks: Cortical responses to concurrent modulations // J. Acoust. Soc. Am. 2013. V. 133(1). P. EL7-EL12.
  • Zahorik P., Kim D.O., Kuwada S., Anderson P.W., Brandewie E., Collecchia R., Srinivasan N. Amplitude modulation detection by human listeners in reverber- ant sound fields: carrier bandwidth effects and binaural versus monaural comparison // Proc. Meet. Acoustics. Acoust. Soc. Am. 2014. V. 15(1). P. 050002.
  • Zwicker E. Die Grenzender Horbarkedite der Amplituden- modulation und der Frequenzmodulation eines Tones // Acustica. 1952. V. 2. P. 125–133.