• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Adaptive features of the visual system of the largha seal Phoca largha to the ambivalent vision

© 2015 A. M. Mass

Institute of Ecology and Evolution RAS, 119071 Moscow, Leninsky Prosp., 33

Received 14 Oct 2014

Morpho-functional organization of the retina of a largha seal Phoca largha was studied. In retinal wholemounts stained by cresyl-violet and cross sections, topography of distribution of ganglion cell density was investigated. The data revealed an area of high cell concentration as an elliptical spot. It was localized in the temporal quadrant of the retina, about 10 mm from the geometrical center. The peak cell density in this area was 1700 cells/mm2. Posteronodal distance as measured in MRT pictures was 24 mm. Based on these data, the retinal resolution was computed. In the high- density area, it was 3.5' (8.5 cycles/ deg) in water and 4.7' (6.5 cycles/deg) in air. A feature of the largha’s retina was large cell size: from 10 to 50 μm, with giant cells of 40 to 50 μm. The giant cells constituted 2.9% of all cell population. Mean cell sizes differed in different retinal areas.

Key words: largha, Phoca largha, retina, wholemount, ganglion cells, cell size, topography, high-density areas, retinal resolution, ambivalent vision

Cite: Mass A. M. Adaptivnye k ambivalentnomu zreniyu svoistva zritelnoi sistemy tyulenya largi (phoca largha) [Adaptive features of the visual system of the largha seal phoca largha to the ambivalent vision]. Sensornye sistemy [Sensory systems]. 2015. V. 29(2). P. 131-141 (in Russian).

References:

  • Busch H., Dücker G. Das visuelle Leistungsvermogen der Seebären (Arctocephalus pusillus und Arctocephalus australs) // Zool. Anz. 1987. V. 219. P. 197–224.
  • Calderone J.B., Reese B.E., Jacobs G.H. Topography of photoreceptors and retinal ganglion cells in the spotted hyena (Crocuta crocuta) // Brain Behav. Evol. 2003. V. 62. P. 182–192.
  • Dawson W.W., Hawthorne M.N., Jenkins R.L., Goldston R.T. Giant neural system in the inner retina and optic nerve of small whales // J. Comp. Neurol. 1982. V. 205.
  • Dawson W.W., Hope G.M., Ulshafer R.J., Hawthorne M.N., Jenkins R.L. Contents of the optic nerve of a small cetacean // Aquatic Mammals. 1983. V. 10. P. 45–56.
  • Dawson W.W., Schroeder J.P., Sharpe S.N. Corneal surface properties of two marine mammal species // Marine Mammal Sci. 1987. V. 3. P. 186–197.
  • Fukuda Y., Stone J. Retinal distribution and central projection of W, X and Y cells of the cat’s retina // J. Neurophysiol. 1974. V. 37. P. 749–772.
  • Griebel U., Peichl L. Colour vision in aquatic mammalsfacts and open questions //Aquatic Mammals. 2003. V. 29. P. 18–30.
  • Hall S.E., Mitchell D.E. Grating acuity of cats measuring with detection and discrimination tasks //Behav. Brain Res. 1991. V. 44. P. 1–9.
  • Hanke F.D., Dehnhardt G., Schaeffel F., Hanke W. Corneal topography, refractive state and accommodation in harbor seals (Phoca vitulina) // Vision Res. 2006. V. 46. P. 837–847.
  • Hanke F.D., Hanke W., Scholtyssek C., Dehnhardt G. Basic mechanisms in pinniped vision // Exp. Brain Res. 2009a. V. 199. P. 299–311.
  • Hanke F.D., Peichl L., Dehnhardt G. Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina) // Brain Behav. Evol. 2009b. V. 74. P. 102–109.
  • Hughes A. The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization // Handbook of Sensory Physiology: The Visual System in Vertebrates / Ed. F. Crescitelli. Berlin: Springer, 1977. V. VII/5. P. 613–756.
  • Hughes A. Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and systematic survey of the soma diameter spectra for classical neurons // J. Comp. Neurol. 1981. V. 197. P. 303–339.
  • Jamieson G.S., Fisher H.D. Visual discriminations in the harbour seal Phoca vitulina, above and below water // Vision Res. 1970. V. 10. P. 1175–1180.
  • JamiesonG.S.,FisherH.D.Theretinaoftheharbourseal Phoca vitulina // Can. J. Zool. 1971. V. 49. P. 19–23.
  • Kröger R.H.H., Katzir G. Comparative anatomy and physiology of vision in aquatic tetrapods // Sensory evolution on the threshold – adaptations in secondairly aquatic vertebrates / Eds J.G.M. Thewissen, S. Nummela Berkeley, Univ. California Press. 2008. P. 121–147.
  • Land M.F., Nilsson D-E. Animal eyes. Oxford. Oxford Univ. Press. 2002.
  • Landau D., DawsonW.W. The histology of retinas from the pinnipedia // Vision Res. 1970. V. 10. P. 691–702.
  • Levenson D.H., SchustermanR.J. Pupillometry in seals and sea lions: Ecological implication // Can. J. Zool. 1997. V. 7. P. 2050–2057.
  • Levenson D.H., Schusterman R.J. Dark adaptation and visual sensitivity in shallow and deep-diving pinnipeds // Marine Mammal Science. 1999. V. 15. P. 1303–1313.
  • Mass A.M. Retinal topography in the walrus (Odobenus rosmarus divergence) and fur seal (Callorhinus ursinus) // Marine Mammal Sensory Systems / Eds A. Thomas, R.A. Kastelein, A.Ya. Supin, New York: Plenum, 1992. P. 119–135.
  • Mass A.M., SupinA.Ya. Peak density, size and regional distribution of ganglion cells in the retina of the fur seal Callorhinus ursinus // Brain Behav. Evol. 1992. V. 39. P. 69–76.
  • Mass A.M., Supin A.Ya. Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the gray whale, Eschrichtius gibbosus // Aquatic Mammals 1997. V. 23. P. 17–28.
  • Mass A.M., Supin A.Ya. Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris // Brain Behav. Evol. 2000. V. 55.P. 111–119.
  • Mass A.M., SupinA.Ya. Visual field organization and retinal resolution of the beluga, Delphinapterus leucas(Pallas) // Aquatic Mammals. 2002. V. 28. P. 241–250.
  • Mass A.M., SupinA.Ya. Retinal topography of the harp seal Pagophilus groenlandicus // Brain Behav. Evol. 2003. V. 62. P. 212–222.
  • Mass A.M., Supin A.Ya. Ganglion cell topography and retinal resolution of the Steller sea lion (Eumetopias jubatus) // Aquatic Mammals. 2005. V. 31. P. 393–402.
  • Mass A.M., Supin A.Ya. Adaptive features of aquatic mammal’s eye // Anat. Rec. 2007. V. 290. P. 701–715.
  • Mass A.M., Supin A.Ya. Retinal ganglion cell layer of the Caspian seal, Pusa caspica: topography and localization of the high resolution area // Brain Behav. Evol. 2010. V. 76. P. 144–153.
  • Nagy A.R., Ronald K. The harp seal, Pagophilus groenlandicus (Erxleben 1777). VI. Structure of retina // Can. J. Zool.1970. V. 48. P. 367–370.
  • Nagy A.R., Ronald K. A light and electron microscopic study of structure of the retina of the harp seal Pagophilus groenlandicus (Erxleben 1777) // Rapp. P. Cons. Inst. Explor. Mer. 1975. V. 169. P. 92–96.
  • Pütter A. Die Augen der Wassersäugethiere // Zoologische Jahrbücher Abtheilung fur Anatomie und Ontogenie der Thiere. 1903. V. 17.P. 99–402.
  • Peichl L. Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells // Visual Neurosi. 1991. V. 7. P. 155–169.
  • Peichl L. Topography of ganglion cells in the dog and wolf retina // J. Comp. Neurol. 1992. V. 324. P. 603– 620.
  • Pettigrew J.D., Dreher B., Hopkins C.S. McCall M.J., Brown M. Peak density and distribution of ganglion cells in the retina of microchiropteran bats: implication for visual acuity // Brain Behav. Evol. 1988. V. 32. P. 39–56.
  • Reuter T., Peichl L. Structure and function of the retina in aquatic tetrapod // Sensory evolution on the threshold-adaptation in secondary aquatic vertebrates / Eds J.G.M. Thewissen, S. Nummela. Univ. California Press, Berkeley. 2008. P. 149–172.
  • Rice D.W. Marine mammals of the world: Sistematics and distribution. Special Publication Number 4.The Society for Marine Mammology, Lawrence, KS. 1998. 231 р.
  • Schusterman R.J. Perception and determinants of under water vocalization in the California sea lion // Les systems sonars animaux. Laboratoire d’ Acoustique Animale / Ed. R.G. Busnel. France: Jouy-en-Josas, 1967. P. 535–617.
  • Schusterman R.J., Kastak D. Why pinnipeds don’t echolocate // J. Acoust. Soc. Am. 2000. V. 107. P. 2256– 2264.
  • Schusterman R.J., Balliet R.F. Conditioned vocalization technique for determining visual acuity thresholds in the sea lion // Science. 1970a. V. 169. Р. 498–501.
  • Schusterman R.J., Balliet R.F. Visual acuity of the Harbour seal and the Steller sea lion under water // Nature. 1970b. V. 226. P. 563–564.
  • Stone J. The wholemount handbook. A guide to the preparation and analysis of retinal wholemounts. Sidney: Maitland, 1981.
  • Stone J. Parallel processing in the visual system. New York: Plenum Press, 1983.
  • Supin A.Ya., Popov V.V., Mass A.M. The Sensory Physiolgy of Aquatic Mammals. Boston: Kluwer Akad Publ., 2001. 332 р.
  • Wartzok D., Sсhusterman R.J., Gailey-Phipps J. Seal echolocation? // Nature. 1984. V. 308 .P. 753–758.
  • Wässle H. Paralell processing in the mammalian retina // Nature Reviews Neurosci. 2004. V. 5. P. 747–757.
  • Wässle H., Hoon Chun Myung, Muller F. Amacrine cells in the ganglion cell layer of the cat retina // J. Comp. Neurol. 1987.V. 26. P. 391–408.
  • Welsch U., Ramdohr S., Riedelsheimer B., Hebel R., Eisert R., Plotz J. Microscopic anatomy of the deep-diving Antarctic weddell seal Leptonychotes weddellii // J. Morphol. 2001. V. 248. P. 165–174.
  • Williams R., Cavada C., Reinoso-Suarez F. Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the spanish wild cat and the domestic cat // J. Neurosci. 1993. V. 13. P. 208–228.
  • Wong R.O.L., Hughes A. The morphology, number and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina // J. Comp. Neurol. 1987. V. 255. P. 159–177.
  • Wong R.O.L., Wye-Dvorak J., Henry G. H. Morphology and distribution of neurons in the retina ganglion cell layer of the adult Tammar wallaby Macropus eugenii // J. Comp. Neurol. 1986. V. 253. P. 1–12.