• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

ЭКСПРЕССИЯ И ФУНКЦИОНАЛЬНАЯ РОЛЬ СИГНАЛЬНЫХ БЕЛКОВ ОБОНЯТЕЛЬНОЙ, ВКУСОВОЙ И ФОТОТРАНСДУКЦИИ В БЕТА-КЛЕТКАХ ОСТРОВКОВ ЛАНГЕРГАНСА

© 2022 г. Ю. А. Ковалицкая, Н. П. Коваленко, М. Ф. Быстрова

Институт биофизики клетки Российской академии наук, обособленное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Пущинский научный центр биологических исследований РАН” 142290 г. Пущино, ул. Институтская, д. 3, Россия
marinabystrova@rambler.ru

Поступила в редакцию 13.09.2021 г.

Вкусовая, обонятельная и зрительная сенсорные системы обеспечивают рецепцию и распознавание физических и химических стимулов, возникающих в окружающей среде. Экспрессия сигнальных белков, вовлеченных во вкусовую, обонятельную и фототрансдукцию, обнаружена в бета-клетках островков Лангерганса поджелудочной железы млекопитающих, продуцирующих и секретирующих инсулин. Будучи впервые идентифицированными в обонятельных нейронах, вкусовых клетках, палочках и колбочках сетчатки, компоненты каскадов сенсорной трансдукции выполняют специфические функции в соответствующих сенсорных клетках. Роль этих молекул в физиологии бета-клеток до сих пор остается дискуссионной, а их экспрессия в отличие от экспрессии в специализированных сенсорных клетках носит не специфический, а эктопический характер. В настоящее время появились данные, показывающие, что сигнальные белки, вовлеченные в сенсорную трансдукцию, в бета- клетках могут участвовать в регуляции глюкозозависимой секреции инсулина. Обзор посвящен обобщению информации об экспрессии и функциональной активности элементов сенсорной трансдукции в бета-клетках млекопитающих, а также в модельных клеточных линиях инсулином мышей, крыс и хомяков, которые сохранили способность к синтезу и секреции инсулина.

Ключевые слова: бета-клетки, островки Лангерганса, секреция инсулина, эктопическая экспрессия, обонятельная трансдукция, вкусовая трансдукция, фототрансдукция

DOI: 10.31857/S0235009222010048

Цитирование для раздела "Список литературы": Ковалицкая Ю. А., Коваленко Н. П., Быстрова М. Ф. Экспрессия и функциональная роль сигнальных белков обонятельной, вкусовой и фототрансдукции в бета-клетках островков лангерганса. Сенсорные системы. 2022. Т. 36. № 1. С. 44–60. doi: 10.31857/S0235009222010048
Цитирование для раздела "References": Yu. A. Kovalitskaya, Kovalenko N. P., Bystrova M. F. Ekspressiya i funktsionalnaya rol signalnykh belkov obonyatelnoi, vkusovoi i fototransduktsii v beta-kletkakh ostrovkov langergansa [The expression and function of components of signaling cascades of taste, olfactory, and phototransduction in mammalian pancreas beta-cells]. Sensornye sistemy [Sensory systems]. 2022. V. 36(1). P. 44–60 (in Russian). doi: 10.31857/S0235009222010048

Список литературы:

  • Abdel-Halim S.M., Guenifi A., He B., Yang B., Mustafa M., Höjeberg B., Hillert J., Bakhiet M., Efendić S. Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes. Diabetes. 1998. V. 47 (3). P. 498–504. https://doi.org/10.2337/diabetes.47.3.498
  • Adler E., Hoon M.A., Mueller K.L., Chandrashekar J., Ryba N.J., Zuker C.S. A novel family of mammalian taste receptors. Cell. 2000. V. 100 (6). P. 693–702. https://doi.org/10.1016/s0092-8674(00)80705-9
  • Astesano A., Regnauld K., Ferrand N., Gingras D., Bendayan M., Rosselin G., Emami S. Cellular and subcellular expression of Golf/Gs and Gq/G11 alpha-subunits in rat pancreatic endocrine cells. Journal of histochemistry and cytochemistry. 1999. V. 47 (3). P. 289–302. https://doi.org/10.1177/002215549904700303
  • Blache P., Gros L., Salazar G., Bataille D. Cloning and tissue distribution of a new rat olfactory receptor-like (OL2). Biochemical and biophysical research communications. 1998. V. 242 (3). P. 669–672. https://doi.org/10.1006/bbrc.1997.8041
  • Blondel O., Moody M.M., Depaoli A.M., Sharp A.H., Ross C.A., Swift H., Bell G.I. Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proceedings of the National Academy of Sciences of the United States of America. 1994. V. 91 (16). P. 7777–7781. https://doi.org/10.1073/pnas.91.16.7777
  • Blondel O., Takeda J., Janssen H., Seino S., Bell G.I. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. Journal of Biological Chemistry. 1993. V. 268 (15). P. 11356–11363.
  • Boll F. On the anatomy and physiology of the retina. Vision Research. 1977. V. 17 (11–12). P. 1249–1265. https://doi.org/10.1016/0042-6989(77)90112-2
  • Briscoe C.P., Peat A.J., McKeown S.C., Corbett D.F., Goetz A.S., Littleton T.R., McCoy D.C., Kenakin T.P., Andrews J.L., Ammala C., Fornwald J.A., Ignar D.M., Jenkinson S. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. British Journal of Pharmacology. 2006. V. 148 (5). P. 619–628. https://doi.org/10.1038/sj.bjp.0706770
  • Brixel L.R., Monteilh-Zoller M.K., Ingenbrandt C.S., Fleig A., Penner R., Enklaar T., Zabel B.U., Prawitt D. TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Archiv : European journal of physiology. 2010. V. 460 (1). P. 69–76. https://doi.org/10.1007/s00424-010-0835-z
  • Bruce J.I., Yang X., Ferguson C.J., Elliott A.C., Steward M.C., Case R.M., Riccardi D. Molecular and functional identification of a Ca2+ (polyvalent cation)-sensing receptor in rat pancreas. Journal of Biological Chemistry. 1999. V. 274 (29). P. 20561–20568. https://doi.org/10.1074/jbc.274.29.20561
  • Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991. V. 65 (1). P. 175–187. https://doi.org/10.1016/0092-8674(91)90418-x
  • Caicedo A., Pereira E., Margolskee R.F., Roper S.D. Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli. The Journal of Neuroscience. 2003. V. 23 (30). P. 9947–9952. https://doi.org/10.1523/JNEUROSCI.23-30-09947.2003
  • Cassar S.C., Chen J., Zhang D., Gopalakrishnan M. Tissue specific expression of alternative splice forms of human cyclic nucleotide gated channel subunit CNGA3. Molecular Vision. 2004. V. 10. P. 808–813.
  • Colsoul B., Jacobs G., Philippaert K., Owsianik G., Segal A., Nilius B., Voets T., Schuit F., Vennekens R. Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models. Pflugers Archiv : European journal of physiology. 2014. V. 466 (3). P. 611–621. https://doi.org/10.1007/s00424-013-1389-7
  • Colsoul B., Schraenen A., Lemaire K., Quintens R., Van Lommel L., Segal A., Owsianik G., Talavera K., Voets T., Margolskee R.F., Kokrashvili Z., Gilon P., Nilius B., Schuit F.C., Vennekens R. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/–mice. Proceedings of the National Academy of Sciences of the United States of America. 2010 V. 107 (11). P. 5208–5213. https://doi.org/10.1073/pnas.0913107107
  • Da Silva Xavier G. The Cells of the Islets of Langerhans. Journal of Clinical Medicine. 2018. V. 7 (3). P. 54–59. https://doi.org/10.3390/jcm7030054
  • Del Guerra S., Bugliani M., D’Aleo V., Del Prato S., Boggi U., Mosca F., Filipponi F., Lupi R. G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids. Nutrition, Metabolism and Cardiovascular Diseases. 2010. V. 20 (1). P. 22–25. https://doi.org/10.1016/j.numecd.2009.02.008
  • Dolenšek J., Rupnik M. S., Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets. 2015. V. № 1.7. P. e1024405 (1–16). https://doi.org/10.1080/19382014.2015.1024405
  • Elayat A.A., el-Naggar M.M., Tahir M. An immunocytochemical and morphometric study of the rat pancreatic islets. Journal of Anatomy. 1995. V. 186. P. 629–637.
  • Emami S., Regnauld K., Ferrand N., Astesano A., Pessah M., Phan H., Boissard C., Garel J.M., Rosselin G. Stimulatory transducing systems in pancreatic islet cells. Annals of the New York Academy of Sciences. 1998. V. 865. P. 118–131. https://doi.org/10.1111/j.1749-6632.1998.tb11170.x
  • Ferrand N., Astesano A., Rosselin G. Evidence of G-protein alpha s and alpha olf subunits in developing human pancreas. Annals of the New York Academy of Sciences. 1996. V. 805 (1). P. 563–569. https://doi.org/10.1111/j.1749-6632.1996.tb17520.x
  • Fesenko E.E., Kolesnikov S.S., Lyubarsky A.L. Direct action of cGMP on the conductance of retinal rod plasma membrane. Biochimica et Biophysica Acta (BBA) – Biomembranes. 1986. V. 856 (3). P. 661–671. https://doi.org/10.1016/0005-2736(86)90162-8
  • Fiume R., Ramazzotti G., Faenza I., Piazzi M., Bavelloni A., Billi A.M., Cocco L. Nuclear PLCs affect insulin secretion by targeting PPARγ in pancreatic β cells. FASEB Journal. 2012. V. 26 (1). P. 203–210. https://doi.org/10.1096/fj.11-186510
  • Frayon S., Pessah M., Giroix M.H., Mercan D., Boissard C., Malaisse W.J., Portha B., Garel J.M. Galphaolf identification by RT-PCR in purified normal pancreatic B cells and in islets from rat models of non-insulin-dependent diabetes. Biochemical and Biophysical Research Communications. 1999. V. 254 (1). P. 269–272. https://doi.org/10.1006/bbrc.1998.9791
  • Fujiwara K., Maekawa F., Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. American Journal of Physiology-Endocrinology and Metabolism. 2005. V. 289 (4). P. E670–E677. https://doi.org/10.1152/ajpendo.00035.2005
  • Gasa R., Trinh K.Y., Yu K., Wilkie T.M., Newgard C.B. Overexpression of G11alpha and isoforms of phospholipase C in islet beta-cells reveals a lack of correlation between inositol phosphate accumulation and insulin secretion. Diabetes. 1999. V. 48. № 5. P. 1035–1044. https://doi.org/10.2337/diabetes.48.5.1035
  • Godchaux W. 3rd, Zimmerman W.F. Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. The Journal of Biological Chemistry. 1979. V. 254 (16). P. 7874–7884.
  • Guenifi A., Portela-Gomes G.M., Grimelius L., Efendić S., Abdel-Halim S.M. Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets. Histochemistry and Cell Biology. 2000. V. 113 (2). P. 81–89. https://doi.org/10.1007/s004180050010
  • Hayes H.L., Moss L.G., Schisler J.C., Haldeman J.M., Zhang Z., Rosenberg P.B., Newgard C.B., Hohmeier H.E. Pdx-1 activates islet α- and β-cell proliferation via a mechanism regulated by transient receptor potential cation channels 3 and 6 and extracellular signal-regulated kinases 1 and 2. Molecular and Cellular Biology. 2013. V. 33 (20). P. 4017–4029. https://doi.org/10.1128/MCB.00469-13
  • Hwang H.J., Yang Y.R., Kim H.Y., Choi Y., Park K.S., Lee H., Ma J.S., Yamamoto M., Kim J., Chae Y.C., Choi J.H., Cocco L., Berggren P.O., Jang H.J., Suh P.G. Phospholipase C-β1 potentiates glucose-stimulated insulin secretion. FASEB Journal. 2019. V. 33 (10). P. 10668–10679. https://doi.org/10.1096/fj.201802732RR
  • Ichimura A., Hasegawa S., Kasubuchi M., Kimura I. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Frontiers in Pharmacology. 2014. V. 5. P.236. https://doi.org/10.3389/fphar.2014.00236
  • Ishihara H., Asano T., Tsukuda K., Katagiri H., Inukai K., Anai M., Kikuchi M., Yazaki Y., Miyazaki J.I., Oka Y. Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia. 1993. V. 36 (11). P. 1139–1145. https://doi.org/10.1007/BF00401058
  • Itoh Y., Kawamata Yu., Harada M., Kobayashi M., Fujii R., Fukusumi Sh., Ogi K., Hosoya M., Tanaka Y., Uejima H., Tanaka H., Maruyama M., Satoh R., Okubo Sh., Kizawa H., Komatsu H., Matsumura F., Noguchi Yu., Shinohara T., Hinuma S., Fujisawa Yu., Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003. V. 422 (6928). P. 173–176. https://doi.org/10.1038/nature01478
  • Kebede M.A., Alquier T., Latour M.G., Poitout V. Lipid receptors and islet function: therapeutic implications? Diabetes Obesity and Metabolism. 2009. V. 11 (4). P. 10–20. https://doi.org/10.1111/j.1463-1326.2009.01114.x
  • Kim M.J., Lee K.H., Min D.S., Yoon S.H., Hahn S.J., Kim M.S., Jo Y.H. Distributional patterns of phospholipase C isozymes in rat pancreas. Pancreas. 2001b. V. 22 (1). P. 47–52. https://doi.org/10.1097/00006676-200101000-00008
  • Kim M.R., Kusakabe Y., Miura H., Shindo Y., Ninomiya Y., Hino A. Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochemical and Biophysical Research Communications. 2003. V. 312 (2). P. 500–506. https://doi.org/10.1016/j.bbrc.2003.10.137
  • Kim S.S., Jun K., Jeong M., Ryu S.H., Suh P.G., Shin H.S. Immunohistochemical localization of eight phospholipase C isozymes in pancreatic islets of the mouse. Experimental and Molecular Medicine. 2001a. V. 33 (3). P. 164–168. https://doi.org/10.1038/emm.2001.28
  • Kojima I., Medina J., Nakagawa Y. Role of the glucosesensing receptor in insulin secretion. Diabetes, Obesity and Metabolism. 2017. V. 19 (1). P. 54–62. https://doi.org/10.1111/dom.13013
  • Komatsu M., Takei M., Ishii H., Sato Y. Glucose-stimulated insulin secretion: A newer perspective. Journal of Diabetes Investigations. 2013. V. 4. № 6. P. 511–516. https://doi.org/10.1111/jdi.12094
  • Kotarsky K., Nilsson N.E., Flodgren E., Owman C., Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochemical and Biophysical Research Communications. 2003. V. 301 (2). P. 406–410. https://doi.org/10.1016/s0006-291x(02)03064-4
  • Kwok-Keung Fung B., Stryer L.J. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proceedings of the National Academy of Sciences of the United States of America. 1980. V. 77 (5). P. 2500–2504. https://doi.org/10.1073/pnas.77.5.2500
  • Kyriazis G.A., Smith K.R., Tyrberg B., Hussain T., Pratley R.E. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology. 2014. V. 155 (6). P. 2112–2121. https://doi.org/10.1210/en.2013-2015
  • Kyriazis G.A., Soundarapandian M.M., Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructoseinduced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences of the United States of America. 2012. V. 109 (8). P. E524–E532. https://doi.org/10.1073/pnas.1115183109
  • Lee B., Bradford P.G., Laychock S.G. Characterization of inositol 1,4,5-trisphosphate receptor isoform mRNA expression and regulation in rat pancreatic islets, RINm5F cells and betaHC9 cells. Journal of molecular endocrinology. 1998. V. 21 (1). P. 31–39. https://doi.org/10.1677/jme.0.0210031
  • Lee B., Laychock S.G. Inositol 1,4,5-trisphosphate receptor isoform expression in mouse pancreatic islets: effects of carbachol. Biochemical Pharmacology. 2001. V. 61 (3). P. 327–336. https://doi.org/10.1016/s0006-2952(00)00559-1
  • Leem J., Shim H.M., Cho H., Park J.H. Octanoic acid potentiates glucose-stimulated insulin secretion and expression of glucokinase through the olfactory receptor in pancreatic β-cells. BBRC. 2018. V. 503 (1). P. 278–284. https://doi.org/10.1016/j.bbrc.2018.06.015
  • Leung N.Y., Montell C. Unconventional Roles of Opsins. Annual Review of Cell and Developmental Biology. 2017. V. 33. P. 241–264. https://doi.org/10.1146/annurev-cellbio-100616-060432
  • Li F., Zhang Z.M. Comparative identification of Ca2+ channel expression in INS-1 and rat pancreatic beta cells. World Journal of Gastroenterology. 2009. V. 15 (24). P. 3046–3050. https://doi.org/10.3748/wjg.15.3046
  • Liman E. TRPM5 and taste transduction. Handb. Exp. Pharmacol. 2007. V. 179. P. 287–298. https://doi.org/10.1007/978-3-540-34891-7_17
  • Marie J.C., Rosselin G., Skoglund G. Pancreatic beta-cell receptors and G proteins coupled to adenylyl cyclase. Annals of the New York Academy of Sciences. 1996. V. 805. P. 122–131. https://doi.org/10.1111/j.1749-6632.1996.tb17478.x
  • Medina A., Nakagawa Y., Ma J., Li L., Hamano K., Akimoto T., Ninomiya Y., Kojima I. Expression of the glucose-sensing receptor T1R3 in pancreatic islet: changes in the expression levels in various nutritional and metabolic states. Endocrine Journal. 2014. V. 61 (8). P. 797–805. https://doi.org/10.1507/endocrj.ej14-0221
  • Medina J., Nakagawa Y., Nagasawa M., Fernandez A., Sakaguchi K., Kitaguchi T., Kojima I. Positive allosteric modulation of the calcium-sensing receptor by physiological concentrations of glucose The Journal of Biological Chemistry. 2016. V. 291 (44). P. 23126–23135. https://doi.org/10.1074/jbc.M116.729863
  • Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990. V. 127 (1). P. 126–132. https://doi.org/10.1210/endo-127-1-126
  • Moran B.M., Abdel-Wahab Y.H.A., Flatt P.R., McKillop A.M. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Journal of Biological Chemistry. 2014. V. 16 (11). P. 1128–1139. https://doi.org/10.1111/dom.12330
  • Munakata Y., Yamada T., Imai J., Takahashi K., Tsukita S., Shirai Y., Kodama S., Asai Y., Sugisawa T., Chiba Y., Kaneko K., Uno K., Sawada S., Hatakeyama H., Kanzaki M., Miyazaki J.I., Oka Y., Katagiri H. Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion. Scientific Reports. 2018. V. 8 (1). P. 1499–1505. https://doi.org/10.1038/s41598-018-19765-5
  • Murovets V., Sozontov E., Zachepilo T. The Effect of the Taste Receptor Protein T1R3 on the Development of Islet Tissue of the Murine Pancreas. Dokl Biol Sci. 2019. V. 484 (1). P. 1–4. https://doi.org/10.1134/S0012496619010010
  • Nakagawa Y., Nagasawa M., Mogami H., Lohse M., Ninomiya Y., Kojima I. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocrine Journal. 2013. V. 60 (10). P. 1191–1206. https://doi.org/10.1507/endocrj.ej13-0282
  • Nakagawa Y., Nagasawa M., Yamada S., Hara A., Mogami H., Nikolaev V.O., Lohse M.J., Shigemura N., Ninomiya Y., Kojima I. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS One. 2009. V. 4 (4): e5106. https://doi.org/10.1371/journal.pone.0005106
  • Nakagawa Y., Ohtsu Y., Nagasawa M., Shibata H., Kojima I. Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3. Endocrine Journal. 2014. V. 61 (2). P. 119–131. https://doi.org/10.1507/endocrj.ej13-0431
  • Nordenskjöld F., Andersson B., Islam M.S. Expression of the Inositol 1,4,5-Trisphosphate Receptor and the Ryanodine Receptor Ca2+-Release Channels in the BetaCells and Alpha-Cells of the Human Islets of Langerhans. Advances in Experimental Medicine and Biology. 2020. V. 1131. P. 271–279. https://doi.org/10.1007/978-3-030-12457-1_11
  • Noushmehr H., D’Amico E., Farilla L., Hui H., Wawrowsky K.A., Mlynarski W., Doria A., Abumrad N.A., Perfetti R. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes. 2005. V. 54 (2). P. 472–481. https://doi.org/10.2337/diabetes.54.2.472
  • Oya M., Suzuki H., Watanabe Y., Sato M., Tsuboi T. Amino acid taste receptor regulates insulin secretion in pancreatic β-cell line MIN6 cells. Genes to Cells. 2011. V. 16 (5). P. 608–616. https://doi.org/10.1111/j.1365-2443.2011.01509.x
  • Ozdener M.H., Subramaniam S., Sundaresan S., Sery O., Hashimoto T., Asakawa Y., Besnard P., Abumrad N.A., Khan N.A. CD36- and GPR120-mediated Ca2-signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology. 2014. V. 146 (4). P. 995–1005. https://doi.org/10.1053/j.gastro.2014.01.006
  • Phan H.H., Boissard C., Pessah M., Regnauld K., Emami S., Gespach C., Rosselin G. Decreased ADP-ribosylation of the Galpha(olf) and Galpha(s) subunits by high glucose in pancreatic B-cells. BBRC. 2000. V. 271 (1). P. 86–90. https://doi.org/10.1006/bbrc.2000.2580
  • Philippaert K., Pironet A., Mesuere M., Sones W., Vermeiren L., Kerselaers S., Pinto S., Segal A., Antoine N., Gysemans C., Laureys J., Lemaire K., Gilon P., Cuypers E., Tytgat J., Mathieu C., Schuit F., Rorsman P., Talavera K., Voets T., Vennekens R. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications. 2017. V. 8. P. 14733–14738. https://doi.org/10.1038/ncomms14733
  • Portela-Gomes G.M., Abdel-Halim S.M. Overexpression of Gs proteins and adenylyl cyclase in normal and diabetic islets. Pancreas. 2002. V. 25 (2). P. 176–181. https://doi.org/10.1097/00006676-200208000-00011
  • Prawitt D., Monteilh-Zoller M.K., Brixel L., Spangenberg C., Zabel B., Fleig A., Penner R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proceedings of the National Academy of Sciences of the United States of America. 2003. V. 100 (25). P. 15166–15171. https://doi.org/10.1073/pnas.2334624100
  • Qian F., Huang P., Ma L., Kuznetsov A., Tamarina N., Philipson L.H. TRP genes: candidates for nonselective cation channels and store-operated channels in insulinsecreting cells. Diabetes. 2002. V. 51 (1). P. 183–189. https://doi.org/10.2337/diabetes.51.2007.s183
  • Régnauld K.L., Leteurtre E., Gutkind S.J., Gespach C.P., Emami S. Activation of adenylyl cyclases, regulation of insulin status, and cell survival by G(alpha)olf in pancreatic beta-cells. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002. V. 282 (3). P. R870–R880. https://doi.org/10.1152/ajpregu.00374.2001
  • Rodríguez-Trelles F., Tarrío R., Ayala F.J. Is ectopic expression caused by deregulatory mutations or due to gene-regulation leaks with evolutionary potential? Bioessays. 2005. V. 27 (6). P. 592–601. https://doi.org/10.1002/bies.20241
  • Romanov R.A., Rogachevskaja O.A., Khokhlov A.A., Kolesnikov S.S. Voltage dependence of ATP secretion in mammalian taste cells. Journal of General Physiology. 2008. V. 132(6). P. 731–744. https://doi.org/10.1085/jgp.200810108
  • Roper S.D., Chaudhari N. Taste buds: cells, signals and synapses. Nature Reviews Neuroscience. 2017. V. 18. № 8. P. 485–497. https://doi.org/10.1038/nrn.2017.68
  • Rosker C., Meur G., Taylor E.J., Taylor C.W. Functional ryanodine receptors in the plasma membrane of RINm5F pancreatic beta-cells. The Journal of Biological Chemistry. 2009. V. 284 (8). P. 5186–5194. https://doi.org/10.1074/jbc.M805587200
  • Rössler P., Kroner C., Freitag J., Noè J., Breer H. Identification of a phospholipase C beta subtype in rat taste cells. European Journal of Cell Biology. 1998. V. 77 (3). P. 253–261. https://doi.org/10.1016/s0171-9335(98)80114-3
  • Salehi A., Flodgren E., Nilsson N. E., Jimenez-Feltstrom J., Miyazaki J., Owman C., Olde B. Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell and Tissue Research. 2005. V. 322 (2). P. 207–215. https://doi.org/10.1007/s00441-005-0017-z
  • Schnell S., Schaefer M., Schöfl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from β-cells through activation of GPR40. Molecular and Cellular Endocrinology. 2007. V. 263 (1–2). P. 173–180. https://doi.org/10.1016/j.mce.2006.09.013
  • Seed Ahmed M., Kovoor A., Nordman S., Abu Seman N., Gu T., Efendic S., Brismar K., Östenson C.G., Gu H.F. Increased expression of adenylyl cyclase 3 in pancreatic islets and central nervous system of diabetic Goto-Kakizaki rats: a possible regulatory role in glucose homeostasis. Islets. 2012. V. 4 (5). P. 343–348. https://doi.org/10.4161/isl.22283
  • Shapiro H., Shachar S., Sekler I., Hershfinkel M., Walker M.D. Role of GPR40 in fatty acid action on the β cell line INS-1E. Biochemical and Biophysical Research Communications. 2005. V. 335 (1). P. 97–104. https://doi.org/10.1016/j.bbrc.2005.07.042
  • Shigemura N., Nakao K., Yasuo T., Murata Y., Yasumatsu K., Nakashima A., Katsukawa H., Sako N., Ninomiya Y. Gurmarin sensitivity of sweet taste responses is associated with co-expression patterns of T1r2, T1r3, and gustducin. BBRC. 2008. V. 367 (2). P. 356–363. https://doi.org/10.1016/j.bbrc.2007.12.146
  • Skoglund G., Basmaciogullari A., Rouot B., Marie J.C., Rosselin G. Cell-specific localization of G protein alpha-subunits in the islets of Langerhans. Journal of Endocrinology. 1999. V. 162 (1). P. 31–37. https://doi.org/10.1677/joe.0.1620031
  • Steneberg P., Rubins N., Bartoov-Shifman R., Walker M.D., Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metabolism. 2005. V. 1 (4). P. 245–258. https://doi.org/10.1016/j.cmet.2005.03.007
  • Stumpf I., Mühlbauer E., Peschke E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells. Journal of Pineal Research. 2008. V. 45 (3). P. 318–327. https://doi.org/10.1111/j.1600-079X.2008.00593.x
  • Swatton J.E., Morris S.A., Cardy T.J., Taylor C.W. Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. The Biochemical Journal. 1999. V. 344 (1). P. 55–60.
  • Taneera J., Lang S., Sharma A., Fadista J., Zhou Y., Ahlqvist E., Jonsson A., Lyssenko V., Vikman P., Hansson O., Parikh H., Korsgren O., Soni A., Krus U., Zhang E., Jing X.J., Esguerra J.L., Wollheim C.B., Salehi A., Rosengren A., Renström E., Groop L. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metabolism. 2012. V. 16 (1). P. 122–134. https://doi.org/10.1016/j.cmet.2012.06.006
  • Tang B., Chow J.Y., Dong T.X., Yang S.M., Lu D.S., Carethers J.M., Dong H. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Cancer Letters. 2016. V. 377 (1). P. 44–54. https://doi.org/10.1016/j.canlet.2016.04.027
  • Tomita T., Masuzaki H., Iwakura H., Fujikura J., Noguchi M., Tanaka T., Ebihara K., Kawamura J., Komoto I., Kawaguchi Y., Fujimoto K., Doi R., Shimada Y., Hosoda K., Imamura M., Nakao K. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia. 2006. V. 49 (5). P. 962–968. https://doi.org/10.1007/s00125-006-0193-8
  • Udagawa H., Hiramoto M., Kawaguchi M., Uebanso T., Ohara-Imaizumi M., Nammo T., Nishimura W., Yasuda K. Characterization of the taste receptor-related Gprotein, α-gustducin, in pancreatic β-cells. Journal of Diabetes Investigation. 2020. V. 11 (4). P. 814–822. https://doi.org/10.1111/jdi.13214
  • Wallin T., Ma Z., Ogata H., Jørgensen I.H., Iezzi M., Wang H., Wollheim C.B., Björklund A. Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2010. V. 1801 (2). P. 191–197. https://doi.org/10.1016/j.bbalip.2009.11.002
  • Wong G.T., Gannon K.S., Margolskee R.F. Transduction of bitter and sweet taste by gustducin. Nature. 1996. V. 381. P. 796–800.
  • Wong S.T., Trinh K., Hacker B., Chan G.C., Lowe G., Gaggar A., Xia Z., Gold G.H., Storm D.R. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron. 2000. V. 27 (3). P. 487–497. https://doi.org/10.1016/s0896-6273(00)00060-x
  • Xue T., Do M.T., Riccio A., Jiang Z., Hsieh J., Wang H.C., Merbs S.L., Welsbie D.S., Yoshioka T., Weissgerber P., Stolz S., Flockerzi V., Freichel M., Simon M.I., Clapham D.E., Yau K.W. Melanopsin signalling in mammalian iris and retina. Nature. 2011. V. 479 (7371). P. 67–73. https://doi.org/10.1038/nature10567
  • Yau K.W., Hardie R.C. Phototransduction motifs and variations. Cell. 2009. V. 139 (2). P. 246–264. https://doi.org/10.1016/j.cell.2009.09.029
  • Zhang D., So W.Y., Wang Y., Wu S.Y., Cheng Q., Leung P.S. Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clinical Science (London, England:1979). 2017. V. 131 (3). P. 247–260. https://doi.org/10.1042/CS20160545
  • Zhang Y., Hoon M.A., Chandrashekar J., Mueller K.L., Cook B., Wu D., Zuker C.S., Ryba N.J. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003. V. 112 (3). P. 293–301. https://doi.org/10.1016/s0092-8674(03)00071-0
  • Zigman J.M., Westermark G.T., LaMendola J., Boel E., Steiner D.F. Human G(olf) alpha: complementary deoxyribonucleic acid structure and expression in pancreatic islets and other tissues outside the olfactory neuroepithelium and central nervous system. Endocrinology. 1993. V. 133 (6). P. 2508–2514. https://doi.org/10.1210/endo.133.6.8243272
  • Zigman J.M., Westermark G.T., LaMendola J., Steiner D.F. Expression of cone transducin, Gz alpha, and other Gprotein alpha-subunit messenger ribonucleic acids in pancreatic islets. Endocrinology. 1994. V. 135 (1). P. 31–37. https://doi.org/10.1210/endo.135.1.8013366