• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

Том 39 №4

Содержание

  1. ЗНАНИЕ О ГЕНЕТИЧЕСКИХ ПРИЧИНАХ ТУГОУХОСТИ – КЛЮЧ К ПРОФИЛАКТИКЕ
  2. ГИПЕРАКУЗИЯ: ОБЗОР ЛИТЕРАТУРЫ И КЛАССИФИКАЦИЯ
  3. ТОПОГРАФИЯ ГАНГЛИОЗНЫХ КЛЕТОК В СЕТЧАТКЕ ГЛАЗА МЛЕКОПИТАЮЩИХ: ЭКОЛОГИЧЕСКИЕ И ЭВОЛЮЦИОННЫЕ АСПЕКТЫ
  4. ПРОСТРАНСТВЕННЫЙ СЛУХ У ЛИЦ ПОЖИЛОГО ВОЗРАСТА С ЦЕНТРАЛЬНЫМИ СЛУХОВЫМИ РАССТРОЙСТВАМИ РАЗЛИЧНОГО ГЕНЕЗА
  5. ОСОБЕННОСТИ СЛУХОВОГО ВОСПРИЯТИЯ РИТМИЧЕСКИХ ЗВУКОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ В ПОЖИЛОМ ВОЗРАСТЕ В НОРМЕ И ПРИ СНИЖЕНИИ СЛУХА
  6. ВОЗМОЖНОСТИ РАЗВИТИЯ КООРДИНАЦИИ ДВИЖЕНИЙ И ПОСТУРАЛЬНОГО КОНТРОЛЯ У ДЕТЕЙ С НАРУШЕНИЯМИ СЛУХОРЕЧЕВОЙ ФУНКЦИИ В УСЛОВИЯХ САМОСТОЯТЕЛЬНОЙ ТРЕНИРОВКИ
  7. ЛОНГИТЮДНОЕ ИССЛЕДОВАНИЕ СПОНТАННОЙ И ВЫЗВАННОЙ АКТИВНОСТИ МИТРАЛЬНЫХ/ПУЧКОВЫХ НЕЙРОНОВ ОБОНЯТЕЛЬНОЙ ЛУКОВИЦЫ КРЫС
  8. РЕАЛИЗАЦИЯ И АПРОБАЦИЯ АЛГОРИТМА АВТОМАТИЧЕСКОЙ ОБРАБОТКИ ДАННЫХ ДЛЯ ЦИФРОВОГО ОКУЛОГРАФА

ТОПОГРАФИЯ ГАНГЛИОЗНЫХ КЛЕТОК В СЕТЧАТКЕ ГЛАЗА МЛЕКОПИТАЮЩИХ: ЭКОЛОГИЧЕСКИЕ И ЭВОЛЮЦИОННЫЕ АСПЕКТЫ

© 2025 г. А. М. Масс, А. Я. Супин

Институт проблем экологии и эволюции РАН, 119071, Москва, Ленинский просп., 33, Российская Федерация
alla-mass@mail.ru

Поступила в редакцию 15.01.2025 г.

Аннотация. Поля зрения млекопитающих характеризуются неравномерной остротой зрения, что в значительной степени определяется различиями в количестве ганглиозных клеток сетчатки, приходящимся на единичный угол зрения. В зонах наилучшего видения концентрация максимальна. Зоны наилучшего видения могут иметь вид либо горизонтально вытянутой полоски (visual streak), либо локального пятна, но возможны и комбинированные варианты: пятно наивысшей концентрации расположено в пределах зрительной полоски. У некоторых млекопитающих (наиболее выражено у китообразных) имеется две зоны высокой концентрации ганглиозных клеток. Такая топография сетчатки могла возникнуть в результате дифференцировки зрительной полоски. Помимо повышенной концентрации ганглиозных клеток, разрешающая способность зависит от упорядоченности расположения ганглиозных клеток.

Ключевые слова: сетчатка, ганглиозные клетки, зоны наилучшего видения, зрительная полоска, area centralis

DOI: 10.7868/S3034593625040037

Цитирование для раздела "Список литературы": Масс А. М., Супин А. Я. Топография ганглиозных клеток в сетчатке глаза млекопитающих: экологические и эволюционные аспекты. Сенсорные системы. 2025. Т. 39. № 4. С. 35–46. doi: 10.7868/S3034593625040037
Цитирование для раздела "References": Mass A. M., Supin A. Ya. Topografiya ganglioznykh kletok v setchatke glaza mlekopitayushchikh: ekologicheskie i evolyutsionnye aspekty [Topography of ganglion cells in the mammal’s retina: ecological and evolutionary aspects]. Sensornye sistemy [Sensory systems]. 2025. V. 39(4). P. 35–46 (in Russian). doi: 10.7868/S3034593625040037

Список литературы:

  • Масс А.М., Супин А.Я. Оптические характеристики и ретинальная топография глаза нутрии (Myocastor coypus) // Сенсорные системы. 2018. Т. 32. С. 124–126. https://doi.org/10.7868/S0235009218020026
  • Calderone J.B., Reese B.E., Jacobs. H. Topography of photoreceptors and retinal ganglion cells in the spotted Hyena (Crocuta crocuta) // Brain, Behav. Evol. 2003. V. 62. P. 182–192. https://doi.org/10.1159/000073270
  • Coimbra J.P., Hart N.S., Collin S.P., Manger P.R. Scene from above: Retinal ganglion cell topography and spatial resolving power in giraffe (Giraffa camelopardalis) // J. comp. Neurol. 2013. V. 521. P. 2042–2057. https://doi.org/10.1002/cne.23271
  • Coimbra J.P, Bertelsen M.F., Manger P.R. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibious) // J. comp. Neurol. 2017. V. 525. P. 2499–2513. https://doi.org/10.1002/cne.24179
  • Coimbra J.P., Manger P. R. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Cedratotherium simum) // J. comp. Neurol. 2017. V. 525(11). P. 2484–2498. https://doi.org/10.1002/cne.24136
  • Coimbra J.P., Pettigrew J.D., Kaswera-Kyamakya C., Gilissen E., Collin S.P., Manger P.R. Retinal ganglion cell topography and spatial resolving power in African megachiropterans: Influence of roosting microhabitat and foraging // J. comp. Neurol. 2017. V. 525 P. 186–203. https://doi.org/10.1002/cne.24055
  • Collin S.P. Behavioral ecology and retinal cell topography. S.N. Archer, M.B.A. Djamgoz, E.R. Loew, J.V.C. Partridge, S. Vallerga (Eds.) Adaptive mechanisms in the ecology of vision. 1999. Springer. P. 509–535.
  • Curcio C.A., Allen, K.A. Topography of Ganglion Cells in Human Retina // J. Comp. Neurol. 1990. V. 300. P. 5–25. https://doi.org/10.1002/cne.903000103
  • Dawson W.W., Hawthorne, M. N. Jenkins, R. L, Goldston R.T. Giant neural system in the inner retina and optic nerve of small whales // J. comp. Neurol. 1982. V.205 (1). P. 1–7. https://doi.org/10.1002/cne.902050102
  • Dral A.D.G. The retinal ganglion cells of Delphinus delphis and their distribution The retinal ganglion cells of Delphinus delphis and their distribution // Aquat. Mammals. 1983. V. 10. P. 57–68. https://doi.org/10.1002/cne.902050102
  • Dunlop S.A., Longley W.A., Beazley L.D. Development of the area centralis and visual streak in the grey kangaroo Macropus fuliginous // Vision Res. 1987. V. 27. P. 151–164. https://doi.org/10.1016/0042-6989(87)90178-7
  • Guo X., Sugita S. Topography of ganglion cells in the retina of the horse // J. Vet. Med. 2000. V. 62. P. 1145–1150. https://doi.org/10.1292/jvms.62.1145
  • Harman A., Dann J., Ahmat A., Macuda T., Johnson K., Timney B. The retinal ganglion cell layer and visual acuity of the camel // Brain, Behav. Evol. 2001. V. 58. P. 15–27. https://doi.org/10.1159/000047258
  • Hughes A. Topography of vision in mammals of contrasting ganglion cell topography // J. Comp. Neurol. 1975. V. 163. P. 107–128.
  • Hughes A. The topography of vision in mammals of contrasting life styles: comparative optics and retinal organization. F. Crescitelli (Ed). Handbook of Sensory Physiology: The Visual system in Vertebrates. 1977. V. VII/5. Berlin: Springer. P. 613–756.
  • Lisney T. J., Collin S.P. Retinal topography in two species of baleen whale (Cetacea: Mysticeti) // Brain, Behav. Evol. 2018. V. 92 (3–4). P. 97–116. https://doi.org/10.1159/000495285
  • Mass A.M. Retinal topography in the walrus Retinal topography in the walrus (Odobenus rosmarus divergens) and fur seal (Callorhinus ursinus). J.A. Thomas, R.A. Kastelein, A.Ya. Supin (Eds). Marine Mammal Sensory Systems. New York: Plenum, 1992. P. 119–135.
  • Mass A.M., Supin A.Ya. Topographic distribution of sizes and density of ganglion cells in the retina of a porpoise, Phocoena Phocoena // Aquat. Mammals. 1986. V. 12. P. 95–102.
  • Mass A.M., Supin A.Ya. Ganglion cells topography of the retina in the bottlenosed dolphin, Tursiops truncate // Brain Behav. Evol. 1995. V. 45. P. 257–265. https://doi.org/10.1159/000113554
  • Mass A.M., Supin A.Ya. Ocular anatomy, retinal ganglion cell distribution, and visual resolution in the gray whale, Eschrichtius gibbosus // Aquat. Mammals. 1997. V. 23. P. 17–28.
  • Mass A.M., Supin A.Ya. Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris // Brain, Beahv. Evol. 2000. V. 55. P. 111–119. https://doi.org/10.1159/000006646
  • Mass A.M., Supin A.Ya. Visual field organization and retinal resolution of the beluga, Delphinapterus leucas (Pallas) // Aquat. Mammals. 2002. V. 28. P. 241–250. https://doi.org/10.1023/a:1013326521559
  • Mass A.M., Supin A.Ya. Estimates of underwater and aerial visual acuity in the European beaver Castor fiber L. based on morphological data // Dokl. Biol. Sci. 2017. V. 473. P. 35–38. https://doi.org/10.1134/S0012496617020065
  • Murayama T., Somiya H. Distribution of ganglion cells and object localizing ability in the retina of three cetaceans // Fish. Sci. 1998. V. 64. P. 27–30. https://doi.org/10.2331/fishsci.64.27
  • Murayama T., Somiya H., Aoki I., Ishii T. The distribution of ganglion cells in the retina and visual acuity of minke whale // Nippon Suissan Gakkaishi. 1992. V. 58. P. 1057–1061.
  • Murayama T., Somiya H., Aoki I., Ishii T. Retinal ganglion cell size and predict visual capabilities of Dall’s porpoise // Mar. Mammal Sci. 1995. V. 11. P. 136–149. https://doi.org/10.1111/j.1748-7692.1995.tb00513.x
  • Peichl L. Topography of ganglion cells in the dog and wolf retina // J. Comp. Neurol. 1992. V. 324. P. 603–620. https://doi.org/10.1002/cne.903240412
  • Pettigrew J.D., Manger P.R. Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): Calculating visual resolution // Visual Neurosci. 2008. V. 25. P. 215–220. https://doi.org/10.1017/S0952523808080498
  • Rapaport D.H., Stone J. The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system // Neuroscience. 1984. V. 11. P. 289–301. https://doi.org/10.1016/0306-4522(84)90024-1
  • Rodieck R.W. The density recovery profile: A method of the analysis of points in the plain applicable to retinal studies // Visual Neurosci. 1991. V. 6. P. 95–111. https://doi.org/10.1017/s095252380001049x
  • Shinozaki A., Hosaka Y., Imagawa T., Uehara M. Topography of ganglion cells and photoreceptors in the sheep retina // J. Comp. Neurol. 2010. V. 518. P. 2305–2315. https://doi.org/10.1002/cne.22333
  • Stone J. The number and distribution of ganglion cells in the cat’s retina // J. Comp. Neurol. 1978. V. 180. P. 753–770.
  • Stone J., Keens J. Distribution of small and medium-sized ganglion cells in the cat’s retina // J. Comp. Neurol. 1980. V. 192. P. 235–246. https://doi.org/10.1002/cne.901920205
  • Stone J., Halasz P. Topography of the retina in the elephant Loxodonta Africana // Brain, Behav. Evol. 1989. V. 34. P. 84–95. https://doi.org/10.1159/000116494
  • Tancred E. The distribution sizes of ganglion cells in the retinas of five Australian marsupials // J. Comp. Neurol. 1981. V. 196. P. 585-603. https://doi.org/10.1002/cne.901960406
  • Wang H.-H., Gallagher S.K., Byers S., Madl J.E. Gionfriddo J.R. Retinal ganglion cell distribution and visual acuity in alpacas (Vicugna pacos) // Veter. Ophthalmol. 2015. V. 18. P. 35–42. https://doi.org/10.1111/vop.12131
  • Wässle A., Peichl L., Boycott B.B. Topography of horizontal cells in the retina of the domestic cat // Proc. R. Soc. Lond. B. 1978. V. 203. P. 269–291. https://doi.org/10.1098/rspb.1978.0105
  • Wässle A., Riemann H.L. The mosaic of nerve cells in the mammalian retina // Proc. R. Soc. Lond. B. 1978. V. 200. P. 441–461. https://doi.org/10.1098/rspb.1978.0026