• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

Том 29 №1

Содержание

  1. К ВОПРОСУ О ВЗАИМНОЙ КОРРЕЛЯЦИИ ИМПУЛЬСНОЙ АКТИВНОСТИ НЕЙРОНОВ СЛУХОВОГО ПУТИ (АНАЛИТИЧЕСКИЙ ОБЗОР)
  2. ОРГАНИЗАЦИЯ ДИРЕКЦИОНАЛЬНОЙ ИЗБИРАТЕЛЬНОСТИ ГАНГЛИОЗНЫХ КЛЕТОК СЕТЧАТКИ. ОБЗОР
  3. РАСПОЗНАВАНИЕ ПРОЕКТИВНО ПРЕОБРАЗОВАННЫХ ПЛОСКИХ ФИГУР. VIII. О ВЫЧИСЛЕНИИ АНСАМБЛЯ РОТАЦИОННОЙ КОРРЕСПОНДЕНЦИИ ОВАЛОВ С СИММЕТРИЕЙ ВРАЩЕНИЯ
  4. РАЗЛИЧИЯ МЕТАБОЛИЧЕСКОЙ АКТИВНОСТИ В ГЛАЗОСПЕЦИФИЧНЫХ СЛОЯХ ДОРСАЛЬНОГО ЯДРА НАРУЖНОГО КОЛЕНЧАТОГО ТЕЛА КОШЕК ПРИ НАРУШЕНИИ БИНОКУЛЯРНОГО ЗРЕНИЯ
  5. ВЛИЯНИЕ МАСКИРОВКИ НА ЧУВСТВИТЕЛЬНОСТЬ СЛУХА К ДИНАМИЧЕСКИМ ИЗМЕНЕНИЯМ СПЕКТРАЛЬНОГО РИСУНКА ЗВУКОВОГО СИГНАЛА В ЗАВИСИМОСТИ ОТ ОТНОШЕНИЯ ИНТЕНСИВНОСТЕЙ МАСКЕРА И СИГНАЛА
  6. ЧУВСТВИТЕЛЬНОСТЬ РАЗЛИЧНЫХ УЧАСТКОВ ГОЛОВЫ КИТА БЕЛУХИ К АКУСТИЧЕСКИМ СТИМУЛАМ: ПРОВЕРКА ГИПОТЕЗ ЗВУКОПРОВЕДЕНИЯ У КИТООБРАЗНЫХ
  7. БИОСЕНСОРНАЯ ТЕСТ-СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ФИЗИОЛОГИЧЕСКИХ КОНЦЕНТРАЦИЙ ГЕПАРИНА

ОРГАНИЗАЦИЯ ДИРЕКЦИОНАЛЬНОЙ ИЗБИРАТЕЛЬНОСТИ ГАНГЛИОЗНЫХ КЛЕТОК СЕТЧАТКИ. ОБЗОР

© 2015 г. Е. М. Максимова

Институт проблем передачи информации им. А.А. Харкевича РАН 127994 Москва, Б. Каретный пер., 19
maximova@iitp.ru

Поступила в редакцию 16.10.2014 г.

Операция вычисления направления движения стимула в поле зрения выполняется впервые уже в сетчатке дирекционально избирательными ганглиозными клетками (ДИ ГК). Разнообразные зрительные стимулы (границы, пятна, полосы разной степени контраста), движущиеся в их рецептивном поле (РП) в предпочтительном направлении, вызывают бурную реакцию. На движение тех же стимулов в противоположном направлении (“0”-направление) клетки не реагируют, равно как и на включение-выключение общего освещения. Изучение этих загадочных клеток продолжается 50 лет. И только в последнее десятилетие благодаря достижениям генной инженерии, новейшим методам морфологических исследований и компьютеризации механизм дирекциональной избирательности окончательно разгадан (Borst, Euler, 2011; Vaney et al., 2012).

Ключевые слова: сетчатка, дирекционально избирательные ганглиозные клетки, звёздчатые амакриновые клетки, биполяры, дендриты, рецептивное поле, синапсы, нейромедиаторы, развитие

Цитирование для раздела "Список литературы": Максимова Е. М. Организация дирекциональной избирательности ганглиозных клеток сетчатки. обзор. Сенсорные системы. 2015. Т. 29. № 1. С. 15-27.
Цитирование для раздела "References": Maximova E. M. Organizatsiya direktsionalnoi izbiratelnosti ganglioznykh kletok setchatki. obzor [Wiring of retinal direction-selective ganglion cells. review]. Sensornye sistemy [Sensory systems]. 2015. V. 29(1). P. 15-27 (in Russian).

Список литературы:

  • Максимов В.В., Максимова Е.М., Максимов П.В. Классификация дирекционально-избирательных элементов, регистрируемых в тектуме карася // Сенсорные системы. 2005. Т. 19. No 4. С. 342–356.
  • Максимова Е.М. Нейромедиаторы сетчатки и перестройки в нервных слоях сетчатки при дегенерации фоторецепторов. Обзор // Сенсорные системы. 2008. Т. 22. No 1. С. 36–51.
  • Максимова Е.М. Молекулярно-генетическая идентификация нейронов сетчатки // Сенсорные системы. 2009. Т. 23. No 4. С. 283–292.
  • Максимова Е.М. Функциональная асимметрия одного из типов нейронов сетчатки при видимой симметрии его морфологии // M.: ПИН РАН, 2013. С. 293–303.
  • Максимова Е.М., Левичкина Е.В., Утина И.А. Морфология предполагаемых дирекционально-избирательных ганглиозных клеток, трассированных DiI в сетчатке рыб // Сенсорные системы. 2006. Т. 20. No 4. С. 279–287.
  • Ackert J.M., Farajian R., Völgyi B., Bloomfield S.A. GABA Blockade Unmasks an OFF Response in ON Direction Selective Ganglion Cells in the Mammalian Retina // J. Physiol. 2009. V. 587. P. 4481–4495.
  • Amthor F.R., Oyster C.W. Spatial organization of retinal information about the direction of image motion // Proc. Natl. Acad. Sci. USA. 1995. V. 92. P. 4002–4005.
  • Arenkiel B.R., Ehlers M.D. Review Article. Molecular genetics and imaging technologies for circuit-based neuroanatomy // Nature. 2009. V. 461. P. 900–907.
  • Barlow H.B., Levick W.R. The mechanism of directionally selective units in rabbit’s retina // J. Physiol. 1965. V. 178. P. 477–504.
  • Borst A., Euler T. Seeing Things in Motion: Models, Circuits, and Mechanisms // Neuron. 2011. P. 974–994.
  • Bowling D.B. Light responses of ganglion cells in the retina of the turtle // J. Physiol. (Lond). 1980. V. 299. P. 173–196.
  • Brandon C. Cholinergic amacrine neurons of the dogfish retina // Vis. Neurosci. 1991. V. 6. P. 553–562.
  • Brecha N., Johnson D., Peichl L., Wässle H. Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and γ-aminobutyrate immunoreactivity // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 6187– 6191.
  • Briggman K.L., Helmstaedter M., Denk W. Wiring specificity in the direction-selectivity circuit of the retina // Nature. 2011. V. 471. P. 183–188.
  • Caldwell J.H., Daw N.W., Wyatt H.J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J. Physiol. 1978. V. 276. P. 277–298.
  • Chan Y.-C., Chiao C.C. Effect of visual experience on the maturation of on-off direction selective ganglion cells in the rabbit retina // Vision Res. 2008. V. 48. P. 2466–2475.
  • Chan Y.-C., Chiao C.-C. Symmetric Synaptic Patterns Between Starburst Amacrine Cells and Direction Selective Ganglion Cells in the Rabbit Retina // J.Comp. Neurol. 2008. V. 508. P. 175–183.
  • Chan Y.-C, Chiao C.-C. The distribution of the preferred directions of the ON-OFF direction selective ganglion cells in the rabbit retina requires refinement after eye opening // Physiol. Rep. 2013. V. 1 (2). P. 1–16).
  • Chen M., Weng S., Deng Q., Xu Z., He S. Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina. // J. Physiol. 2009. V. 587. No 4. P. 819–828.
  • Cepko C.L., Austin C.P., Yang X., Alexiades M., Ezzeddine D. Cell fate determination in the vertebrate retina // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 589–595.
  • Coombs J.L., Van Der List D., Chapula L.M. Morphological properties of mouse retinal Ganglion cells during postnatal development // J. Comp. Neurol. 2007. V. 503. P. 803–814.
  • Damjanović I., Maximova E.M., Maximov V.V. Receptive field sizes of direction-selective units in the fish tectum // J. Integrati. Neurosci. 2009. V. 8. No 1. P. 77–93.
  • Damjanović I., Maximova E.M., Aliper A., Maximov P., Maximov V.V. Opposing motion inhibits responses of direction-selective ganglion cells in the fish retina // J. Integrati. Neurosci. 2015. V. 1.
  • Dong W., Sun W., Zhang Y., Chen X., He S. Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina // J. Physiol. 2004. V. 556. P. 11–17.
  • Elstrott J., Anishchenko A., Greschner M., Sher A., Litke A.M., Chichilnisky E.J., Feller M.B. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves // Neuron. 2008. V. 58(4). P. 499–506.
  • Euler T., Detwiler P.B., Denk W. Directionally selective calcium signals in dendrites of starburst amacrine cells // Nature. 2002. V. 418. P. 845–852.
  • Fadoola J.M., Dowling J.E. Zebrafish: A model system for the study of eye genetics // Progre. Ret. Eye Res. 2008. V. 27. P. 89–110.
  • Famiglietti E.V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction // J. Comp. Neurol.. 1991. V. 309. P. 40–70.
  • Famiglietti E.V. Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina // J. Comp. Neurol. 1992. V. 324. P. 322–335.
  • Famiglietti E.V. A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells // Vis. Neurosci. 2002. V. 19. P. 145–162.
  • Fried S.I., Münch T.A., Werblin F.S. Mechanisms and circuitry underlying directional selectivity in the retina // Nature. 2002. V. 420. P. 411–414.
  • Gebhardt C., Baier H., F. Del Bene Direction selectivity in the visual system of the zebrafish larva // Frontiers in Neural. Circuits. 2013. V. 7. Article 111.
  • Grienberger C., Konnerth A. Imaging calcium in neurons // Neuron. 2012. N. 73. P. 862–885.
  • Hausselt S.E., Euler T., Detwiler P.B., Denk W. A Dendrite-autonomous mechanism for direction selectivity in retinal Starburst amacrine cells // PLoS Biology. 2007. V. 5. P. 1474–1493.
  • He S., Masland R.H. Retinal direction selectivity after targeted laser ablation of starburst amacrine cells // Nature. 1997, V. 389, P. 378–382.
  • He S., Masland R.H. ON-direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation // Vis Neurosci. 1998. V. 15. P. 369–375.
  • He S., Jin Z.F., Masland R.H. The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism // J. Neurosci. 1999. V. 19. P. 8049– 8056.
  • Helmstaedter M., Briggman K.L., Denk W. High-accuracy neurite tracing for high-throughput neuroanatomy // Nat. Neurosci. 2011. V. 14. P. 1081–1088.
  • Huberman A.D., Wei W., Elstrott J., Stafford B.K., Feller M.B., Barres B.A. Genetic identification of an ON-OFF direction-selective retinal ganglion cell subtype reveals a layer specific subcortical map of posterior motion // Neuron. 2009. V. 62. P. 327–334.
  • Huerta I. De la, Kim I.-J., Voinescu P.E., Sanes J.R. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors // PNAS. 2012. V. 109 No 43. P. 17663–17668.
  • Jacobson M., Gaze R.M. Types of visual response from single units in the optic tectum and optic nerve of the goldfish // J. Exp. Physiol. 1964. V. 49. P. 199–209.
  • Kay J.N., De la Huerta I., Kim I.-J., Zhang Y, Yamagata M., Chu M.W., Meister M., Sanes J.R. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections // J. Neurosci. 2011. V. 31. No 21. P. 7753–7762.
  • Kim I-J., Zhang Y., Yamagata M., Meister M., Sanes J.R. Molecular identification of a retinal cell type that responds to upward motion // Nature. 2008. V. 452. P. 478–482.
  • Kim I.-J., Zhang Y., Meister M., Sanes J.R. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers // J. Neurosci. 2010. V. 30. P. 1452– 1462.
  • Kim J.S., Greene M.J., Zlateski A., Lee K., Richardson M., Turaga S.C., Purcaro M., Balkam M., Robinson A., Behabadi B.F., Campos M., Denk W., Seung H.S. Spacetime wiring specificity supports direction selectivity in the retina // Nature. 2014. V. 509. P. 331–6.
  • Kittila C.A., Massey S.C. Pharmacology of directionally selective ganglion cells in the rabbit retina// J. Neurophysiol. 1997. V. 77. P. 675–689.
  • Lee S., Kim K., Zhou Z.J. Role of ACh-GABA Cotransmission in detecting image motion and motion direction // J.Neuron. 2010. V. 11. P. 1159–1172.
  • Marc R.E. Neurochemical stratification in the inner plexiform layer of the vertebrate retina // Vis. Res. 1986. V. 26. P. 223–238.
  • Marvin J.S., Borghuis B.G., Tian L., Cichon J., Harnett M.T., Akerboom J., Gordus A., Renninger S.L., Chen T.W., Bargmann C.I., Orger M.B., Schreiter E.R., Demb J.B., Gan W.B., Hires S.A., Looger L.L. An optimized fluorescent probe for visualizing glutamate neurotransmission // Nat. Methods. 2013. V. 10. P. 162–170.
  • Masland R.H. The fundamental plan of the retina // Nature. 2001. V. 4. P. 877–886.
  • Masland R.H. The neuronal organization of the retina // Neuron. 2012. V. 76. N. 2. P. 266–280.
  • Masland R.H., Mills J.W., Hayden S.A. Acetylcholinesynthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers // Proc. Roy. Soc. Lond. B. 1984. V. 223. P. 79–100.
  • Maximov V., Maximova E., Maximov P. Direction selectivity in the goldfish tectum revisited // Ann. N.Y. Acad. Sci. 2005. V. 1048. P. 198–205.
  • Miller R.F., Bloomfield S.A. Electroanatomy of a unique amacrine cell in the rabbit retina // Proc. Natl. Acad. Sci. USA. 1983. V. 80. No 10. P. 3069–3073.
  • Mumm J.S., Williams P.R., Godinho L., Koerber A., Pittman A.J., Roeser T., Chien C.B. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells // Neuron. 2006. V. 52. P. 609–621.
  • Nikolaou N., Lowe A.S., Walker A.S., Abbas F., Hunter P.R., Thompson I.D., Meyer M.P. Parametric functional maps of visual inputs to the tectum // Neuron. 2012. V. 76. P. 317–324.
  • Nikolaou N., Meyer M.P. Imaging circuit formation in zebrafish // Develop Neurobiol. 2012. V. 72. P. 346– 357.
  • O’Malley D.M., Sandell J.H., Masland R.H. Co-release of acetylcholine and GABA by the starburst amacrine cells // J. Neurosci. 1992. V. 12. No 4. P. 1394–1408.
  • Oyster C.W., Barlow H.B. Direction-selective units in rabbit retina: distribution of preferred directions // Science. 1967. V. 155. P. 841–842.
  • Park S.G.H., Kim I.-J., Looger L.L., Demb J.B., Borghuis B.G. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning // J. Neurosci. 2014. V. 34. No 11. P. 3976– 3981.
  • Peґquignot M.O., Provost A.C., Salleґ S., Taupin P., Sainton K.M, Marchant D., Martinou J.C., Ameisen J.C., Jais J.-P., M. Abitbol M. Major role of BAX in apoptosis during retinal development and in establishment of a functional postnatal retina // Develop. Dynamics. 2003. V. 228. P. 231–238.
  • Portugues R., Engert F. The neural basis of visual behaviors in the larval zebrafish // Frontiers in Neural Circuits. 2012. V. 6. Article 59. P. 1–9.
  • Rivlin-Etzion M., Zhou K., Wei W., Elstrott J., Nguyen P.L., Barres B.A., Huberman A.D., Feller M.B. Transgenic mice reveal unexpected diversity of ON-OFF directionselective retinal ganglion cell subtypes and brain structures involved in motion processing // J. Neurosci., 2011. V. 31. No 24. P. 8760–8769.
  • Sanes J.R., Zipursky S.L. Design principles of insect and vertebrate visual systems // Neuron. 2010. V. 66. No 1. P. 15–36.
  • Sivyer B., Williams S.R. Direction selectivity is computed by active dendritic integration in retinal ganglion cells // Nature neuroscience. 2013 V. 16. N. 12. P. 1848.
  • Stacy R.C., Wong R.O.L. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina // J. Compar. Neurol. 2003. V. 456. P. 154–166.
  • Sun L., Han X., He S. Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity // PLoS 2011, V. 6. Issue 5. P. 1–10.
  • Sun W., Deng Q., Levick W.R., He S. ON direction-selective ganglion cells in the mouse retina // J. Physiol. 2006. V. 576. No 1. P. 197–202.
  • Tauchi M., Masland R.H. The shape and arrangement of the cholinergic neurons in the rabbit retina // Proc. R. Soc. Lond. 1984. V. 223. P. 101–119.
  • Tian N. Developmental mechanisms that regulate retinal ganglion cell dendritic morphology // Dev. Neurobiol. 2011. V. 71. No 12. P. 1297–1309.
  • Tian L., Hires S.A., Mao T., Huber D., Chiappe M.E., Chalasani S.H., Petreanu L., Akerboom J., McKinney S.A., Schreiter E.R., Bargmann C.I., Jayaraman V., Svoboda K., Looger L.L. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators // Nature Methods. 2009. V. 6. P. 875–881.
  • Trenholm S., Johnson K., Li X., Smith R.G., Awatramani G.B. Parallel mechanisms encode direction in the retina // J. Neuron. 2011. V. 71. No 4. P. 683–694.
  • Tsvilling V., Donchin O., Shamir M., Segev R. Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells // Europ. J. Neurosci. 2012. V. 35. P. 436–444.
  • Uchiyama H., Kanaya T., Sonohata S. Computation of motion direction by quail retinal ganglion cells that have a nonconcentric receptive field // Visual Neurosci. 2000. V. 17. P. 263–271.
  • Vaney D.I. “Coronate” amacrine cells in the rabbit retina have the “starburst” dendritic morphology // Proc. Royal. Soc. London Series B. 1984. V. 220. P. 501–508.
  • Vaney, D.I. Territorial organization of direction-selective ganglion cells in rabbit retina // J. Neurosci. 1994. V. 14. P. 6301–6316.
  • Vaney D.I., He S., Taylor W.R., Levick W.R. Directionselective ganglion cells in the retina / Eds Zanker J.M., Zeil J. // Motion Vision: Computational, Neural, and Ecological Constraints, Springer-Verlag, Berlin, 2001. P. 13–56.
  • Vaney D.I., Sivyer B., Taylor W.R. Direction selectivity in the retina: symmetry and asymmetry in structure and function // Nat. Rev. Neurosci. 2012. V. 13. No 3. P. 194–208.
  • Vaney, D.I., Young, H.M. GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina // Brain Res. 1988. V. 438. P. 369–373.
  • Walker A.S., Burrone J., Meyer M.P. Functional imaging in the zebrafish retinotectal system using RGECO // Front. Neural Circuits. 2013. V. 7. Article 34. P. 1–30.
  • Wässle H., Puller C., Müller F., Haverkamp S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina // J. Neurosci. 2009. V. 29. P. 106 –117.
  • Wei W., Hamby A.M., Zhou K., Feller M.B. Development of asymmetric inhibition underlying direction selectivity in the retina // Nature. 2011. V. 469. P. 402–406.
  • Weng S., Sun W., He S. Identification of ON-OFF directionselective ganglion cells in the mouse retina // J. Physiol. 2005. V. 562. No 3. P. 915–923.
  • Williams M.E., de Wit J., Ghosh A. Review. Molecular mechanisms of synaptic specificity in developing neural circuits // J. Neuron. 2010. V. 68. No 1. P. 9–18.
  • Yazulla S., Studholme K.M. Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry // J. Neurocyt. 2001. V. 30. 551–592.
  • Yonehara K., Ishikane H., Sakuta H., Shintani T., Nakamura-Yonehara K., Kamiji N.L.,Usui Sh., Noda M. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion // Nature. 2008. V. l. P. 4521-.
  • Yonehara K., Shintani T., Suzuki R., Sakuta H., Takeuchi Y. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse // PLoS ONE. 2008. V. 3. P. 1533.
  • Yonehara K., Balint K., Noda M., Nagel G., Bamberg E., Roska B. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit // Nature. 2011. V. 469. P. 407–410.
  • Yonehara K., Farrow K., Ghanem A., Hillier D., Balin, K., Teixeira M., Jüttner J., Noda M., Neve R.L., Conzelmann K.K., Roska B. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells // Neuron. 2013. V. 79. P. 1078–1085.
  • Yoshida K., Watanabe D., Ishikane H., Tachibana M., Pastan I., Nakanishi S.A. Key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron // 2001. V. 30. P. 771–780.
  • Zhou Z.J., Fain G.L. Starburst amacrine cells change from spiking to nonspiking neurons during retinal development // Proc. Natl. Acad. Sci. USA. V. 93. P. 8057–8062.