• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

ИЗМЕНЕНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК И УРОВНЯ КОГЕРЕНТНОСТИ ФОКАЛЬНОЙ АКТИВНОСТИ ОБОНЯТЕЛЬНОЙ ЛУКОВИЦЫ КРЫСЫ В ДИНАМИКЕ КСИЛАЗИН-ТИЛЕТАМИНЗОЛАЗЕПАМОВОГО НАРКОЗА

© 2023 г. В. Н. Кирой, П. О. Косенко, П. Д. Шапошников, Е. В. Асланян, А. И. Саевский

Южный федеральный университет 344058 Ростов-на-Дону, пр. Стачки, 194, Россия
peza-i@mail.ru

Поступила в редакцию 03.06.2022 г.

Известно, что фокальная активность (ФА), регистрируемая в обонятельной луковице (ОЛ), в значительной степени генерируется в ее локальных нейронных сетях, имеет непосредственное отношение к обработке ольфакторной информации и подвержена влиянию различных факторов, в том числе анестетиков. С использованием 8-электродных матриц на шести взрослых самцах серых доминитицированных крыс в хронических экспериментах исследовали эффекты ксилазин-тилетамин-золазепамовой (КТЗ) анестезии на спектральные характеристики и когерентность ФА, регистрируемой с дорзальной поверхности ОЛ в частотном диапазоне 1–150 Гц в течение двух часов. Показано, что наиболее существенные изменения в ФА ОЛ крыс в КТЗ- наркозе наблюдаются в области высоких гамма-частот. Статистически значимое увеличение мощности (в 2–4 раза) и когерентности (до 50%) этих частот наблюдалось в ФА всех животных уже в течение 10–15 мин от начала наркотизации. При этом, если в бодрствовании модальные значения этих частот приходились на область 70–80 Гц, то по прошествии указанного времени – 110–130 Гц. В динамике наркоза наблюдалось постепенное смещение модального значения в распределении их мощности влево, в область более низких частот (90–110 Гц), при этом их суммарная мощность (но не когерентность) статистически значимо снижалась лишь на фоне выхода животного из наркоза.

Ключевые слова: обонятельная луковица, фокальная активность, гамма-активность, когерентность, ксилазин-тилетамин-золазепамовый наркоз

DOI: 10.31857/S0235009223010043  EDN: ATSRWQ

Цитирование для раздела "Список литературы": Кирой В. Н., Косенко П. О., Шапошников П. Д., Асланян Е. В., Саевский А. И. Изменение спектральных характеристик и уровня когерентности фокальной активности обонятельной луковицы крысы в динамике ксилазин-тилетаминзолазепамового наркоза. Сенсорные системы. 2023. Т. 37. № 1. С. 65–77. doi: 10.31857/S0235009223010043
Цитирование для раздела "References": Kiroy V. N., VP. O. Kosenko, Shaposhnikov P. D., Saevskiy A. I., Aslanyan E. V. Izmenenie spektralnykh kharakteristik i urovnya kogerentnosti fokalnoi aktivnosti obonyatelnoi lukovitsy krysy v dinamike ksilazin-tiletaminzolazepamovogo narkoza [Changes in the spectral characteristics and the coherence of the rat olfactory bulb local field potentials under xylazine-tiletamine-zolazepam anesthesia]. Sensornye sistemy [Sensory systems]. 2023. V. 37(1). P. 65–77 (in Russian). doi: 10.31857/S0235009223010043

Список литературы:

  • Adrian E.D. Olfactory reactions in the brain of the hedgehog. The Journal of Physiology. 1942. V. 100 (4). P. 459–473. https://doi.org/10.1113/jphysiol.1942.sp003955
  • Beshel J., Kopell N., Kay L.M. Olfactory Bulb Gamma Oscillations Are Enhanced with Task Demands. Journal of Neuroscience. 2007. V. 27 (31). P. 8358–8365. https://doi.org/10.1523/JNEUROSCI.1199-07.2007
  • Buonviso N., Amat C., Litaudon P., Roux S., Royet J.-P., Farget V., Sicard G. Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. European Journal of Neuroscience. 2003. V. 17 (9). P. 1811–1819. https://doi.org/10.1046/j.1460-9568.2003.02619.x
  • Cassenaer S., Laurent G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature. 2007. V. 448 (7154). P. 709–713. https://doi.org/10.1038/nature05973
  • David F.O., Hugues E., Cenier T., Fourcaud-Trocmé N., Buonviso N. Specific Entrainment of Mitral Cells during Gamma Oscillation in the Rat Olfactory Bulb. PLoS Computational Biology. 2009. V. 5 (10). P. e1000551. https://doi.org/10.1371/journal.pcbi.1000551
  • Fourcaud-Trocme N., Courtiol E., Buonviso N. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat. Frontiers in Neural Circuits. 2014. V. 8. https://doi.org/10.3389/fncir.2014.00088
  • Frederick D.E., Brown A., Brim E., Mehta N., Vujovic M., Kay L.M. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing. Journal of Neuroscience. 2016. V. 36 (29). P. 7750–7767. https://doi.org/10.1523/JNEUROSCI.0569-16.2016
  • Friedman D., Strowbridge B.W. Both Electrical and Chemical Synapses Mediate Fast Network Oscillations in the Olfactory Bulb. Journal of Neurophysiology. 2003. V. 89 (5). P. 2601–2610. https://doi.org/10.1152/jn.00887.2002
  • Fuentes R.A., Aguilar M.I., Aylwin M.L., Maldonado P.E. Neuronal Activity of Mitral-Tufted Cells in Awake Rats During Passive and Active Odorant Stimulation. Journal of Neurophysiology. 2008. V. 100 (1). P. 422–430. https://doi.org/10.1152/jn.00095.2008
  • Fukunaga I., Herb J.T., Kollo M., Boyden E.S., Schaefer A.T. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nature Neuroscience. 2014. V. 17 (9). P. 1208–1216. https://doi.org/10.1038/nn.3760
  • Gire D.H., Franks K.M., Zak J.D., Tanaka K.F., Whitesell J.D., Mulligan A.A., Hen R., Schoppa N.E. Mitral Cells in the Olfactory Bulb Are Mainly Excited through a Multistep Signaling Path. Journal of Neuroscience. 2012. V. 32 (9). P. 2964–2975. https://doi.org/10.1523/JNEUROSCI.5580-11.2012
  • Grosmaitre X., Santarelli L.C., Tan J., Luo M., Ma M. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nature Neuroscience. 2007. V. 10 (3). P. 348–354. https://doi.org/10.1038/nn1856
  • Gschwend O., Beroud J., Carleton A. Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice. PLoS ONE. 2012. V. 7 (1). P. e30155. https://doi.org/10.1371/journal.pone.0030155
  • Hayar A, Karnup S, Shipley M, Ennis M. Olfactory Bulb Glomeruli: External Tufted Cells Intrinsically Burst at Theta Frequency and Are Entrained by Patterned Olfactory Input. Journal of Neuroscience. 2004. V. 24 (5). P. 1190–1199. https://doi.org/10.1523/JNEUROSCI.4714-03.2004
  • Hermer-Vazquez R., Hermer-Vazquez L., Srinivasan S., Chapin J.K. Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching. Experimental Brain Research. 2007. V. 180 (2). P. 217–235. https://doi.org/10.1007/s00221-007-0850-2
  • Jessberger J., Zhong W., Brankačk J., Draguhn A. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice. Neural Plasticity. 2016. V. 2016. P. 1–9. https://doi.org/10.1155/2016/4570831
  • Kay L.M. Theta oscillations and sensorimotor performance. Proceedings of the National Academy of Sciences. 2005. V. 102 (10). P. 3863–3868. https://doi.org/10.1073/pnas.0407920102
  • Kay L.M. Circuit Oscillations in Odor Perception and Memory. Progress in Brain Research. 2014. V. 204. P. 223–251. https://doi.org/10.1016/B978-0-444-63350-7.00009-7
  • Kay L.M. Olfactory system oscillations across phyla. Current Opinion in Neurobiology. 2015. V. 31. P. 141–147. https://doi.org/10.1016/j.conb.2014.10.004
  • Kay L.M., Beshel J. A Beta Oscillation Network in the Rat Olfactory System During a 2-Alternative Choice Odor Discrimination Task. Journal of Neurophysiology. 2010. V. 104 (2). P. 829–839. https://doi.org/10.1152/jn.00166.2010
  • Kay L.M., Beshel J., Brea J., Martin C., Rojas-Líbano D., Kopell N. Olfactory oscillations: the what, how and what for. Trends in Neurosciences. 2009. V. 32 (4). P. 207–214. https://doi.org/10.1016/j.tins.2008.11.008
  • Kay L.M., Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Seminars in Cell & Developmental Biology. 2006. V. 17 (4). P. 433–442. https://doi.org/10.1016/j.semcdb.2006.04.012
  • Kepecs A., Uchida N., Mainen Z.F. The Sniff as a Unit of Olfactory Processing. Chemical Senses. 2006. V. 31 (2). P. 167–179. https://doi.org/10.1093/chemse/bjj016
  • Kopell N., Ermentrout G.B., Whittington M.A., Traub R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences. 2000. V. 97 (4). P. 1867–1872. https://doi.org/10.1073/pnas.97.4.1867
  • Kosenko P.O., Smolikov A.B., Voynov V.B., Shaposhnikov P.D., Saevskiy A.I., Kiroy V.N. Effect of Xylazine–Tiletamine–Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comparative Medicine. 2020. V. 70 (6). P. 492–498. https://doi.org/10.30802/AALAS-CM-20-990015
  • Lagier S., Carleton A., Lledo P. Interplay between Local GABAergic Interneurons and Relay Neurons Generates Oscillations in the Rat Olfactory Bulb. Journal of Neuroscience. 2004. V. 24 (18). P. 4382–4392. https://doi.org/10.1523/JNEUROSCI.5570-03.2004
  • Laurent G., Wehr M., Davidowitz H. Temporal Representations of Odors in an Olfactory Network. The Journal of Neuroscience. 1996. V. 16 (12). P. 3837–3847. https://doi.org/10.1523/JNEUROSCI.16-12-03837.1996
  • Li A., Zhang L., Liu M., Gong L., Liu Q., Xu F. Effects of different anesthetics on oscillations in the rat olfactory bulb. Journal of the American Association for Laboratory Animal Science: JAALAS. 2012. V. 51 (4). P. 458–463.
  • Li A., Zhang L., Liu M., Gong L., Liu Q., Xu F. Effects of Different Anesthetics on Oscillations in the Rat Olfactory Bulb. Journal of the American Association for Laboratory Animal Science. 2012. V. 51 (4). P. 458–463.
  • Li G., Cleland T.A. A coupled-oscillator model of olfactory bulb gamma oscillations. PLOS Computational Biology. 2017. V. 13(11). P. e1005760. https://doi.org/10.1371/journal.pcbi.1005760
  • Lindén H., Tetzlaff T., Potjans T.C., Pettersen K.H., Grün S., Diesmann M., Einevoll G.T. Modeling the Spatial Reach of the LFP. Neuron. 2011. V. 72 (5). P. 859–872. https://doi.org/10.1016/j.neuron.2011.11.006
  • Lowry C.A., Kay L.M. Chemical Factors Determine Olfactory System Beta Oscillations in Waking Rats. Journal of Neurophysiology. 2007. V. 98 (1). P. 394–404. https://doi.org/10.1152/jn.00124.2007
  • Manabe H., Mori K. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states. Journal of Neurophysiology. 2013. V. 110 (7). P. 1593–1599. https://doi.org/10.1152/jn.00379.2013
  • Martin C., Beshel J., Kay L.M. An Olfacto-Hippocampal Network Is Dynamically Involved in Odor-Discrimination Learning. Journal of Neurophysiology. 2007. V. 98 (4). P. 2196–2205. https://doi.org/10.1152/jn.00524.2007
  • Martin C., Gervais R., Chabaud P., Messaoudi B., Ravel N. Learning-induced modulation of oscillatory activities in the mammalian olfactory system: The role of the centrifugal fibres. Journal of Physiology-Paris. 2004. V. 98 (4–6). P. 467–478. https://doi.org/10.1016/j.jphysparis.2005.09.003
  • Martin C., Gervais R., Hugues E., Messaoudi B., Rave N. Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? Journal of Neuroscience. 2004. V. 24 (2). P. 389–397. https://doi.org/10.1523/JNEUROSCI.3433-03.2004
  • Martin C., Gervais R., Messaoudi B., Ravel N. Learninginduced oscillatory activities correlated to odour recognition: a network activity. European Journal of Neuroscience. 2006. V. 23 (7). P. 1801–1810. https://doi.org/10.1111/j.1460-9568.2006.04711.x
  • Martin C., Ravel N. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks? Frontiers in Behavioral Neuroscience. 2014. V. 8. https://doi.org/10.3389/fnbeh.2014.00218
  • Nelson M.J., Pouget P. Do Electrode Properties Create a Problem in Interpreting Local Field Potential Recordings? Journal of Neurophysiology. 2010. V. 103 (5). P. 2315–2317. https://doi.org/10.1152/jn.00157.2010
  • Nusser Z., Kay L.M., Laurent G., Homanics G.E., Mody I. Disruption of GABA A Receptors on GABAergic Interneurons Leads to Increased Oscillatory Power in the Olfactory Bulb Network. Journal of Neurophysiology. 2001. V. 86 (6). P. 2823–2833. https://doi.org/10.1152/jn.2001.86.6.2823
  • Plourde G., Arseneau F. Attenuation of high-frequency (30–200Hz) thalamocortical EEG rhythms as correlate of anaesthetic action: evidence from dexmedetomidine. British Journal of Anaesthesia. 2017. V. 119 (6). P. 1150–1160. https://doi.org/10.1093/bja/aex329
  • Polese D., Martinelli E., Marco S., di Natale C., GutierrezGalvez A. Understanding Odor Information Segregation in the Olfactory Bulb by Means of Mitral and Tufted Cells. PLoS ONE. 2014. V. 9 (10). P. e109716. https://doi.org/10.1371/journal.pone.0109716
  • Ravel N., Chabaud P., Martin C., Gaveau V., Hugues E., Tallon-Baudry C., Bertrand O., Gervais R. Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60–90°Hz) and beta (15–40°Hz) bands in the rat olfactory bulb. European Journal of Neuroscience. 2003. V. 17(2). P. 350–358. https://doi.org/10.1046/j.1460-9568.2003.02445.x
  • Ravel N., Pager J. Respiratory patterning of the rat olfactory bulb unit activity: Nasal versus tracheal breathing. Neuroscience Letters. 1990. V. 115 (2–3). P. 213–218. https://doi.org/10.1016/0304-3940(90)90457-K
  • Rojas-Líbano D., Kay L.M. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cognitive Neurodynamics. 2008. V. 2 (3). P. 179–194. https://doi.org/10.1007/s11571-008-9053-1
  • Rojas-Libano D., Kay L.M. Interplay between Sniffing and Odorant Sorptive Properties in the Rat. Journal of Neuroscience. 2012. V. 32 (44). P. 15577–15589. https://doi.org/10.1523/JNEUROSCI.1464-12.2012
  • Saghatelyan A., Carleton A., Lagier S., de Chevigny A., Lledo P.-M. Local neurons play key roles in the mammalian olfactory bulb. Journal of Physiology-Paris. 2003. V. 97 (4–6). P. 517–528. https://doi.org/10.1016/j.jphysparis.2004.01.009
  • Schaefer A.T., Angelo K., Spors H., Margrie T.W. Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision. PLoS Biology. 2006. V. 4 (6). P. e163. https://doi.org/10.1371/journal.pbio.0040163
  • Schoppa N.E. Synchronization of Olfactory Bulb Mitral Cells by Precisely Timed Inhibitory Inputs. Neuron. 2006. V. 49 (2). P. 271–283. https://doi.org/10.1016/j.neuron.2005.11.038
  • Schoppa N.E., Westbrook G.L. Glomerulus-Specific Synchronization of Mitral Cells in the Olfactory Bulb. Neuron. 2001. V. 31 (4). P. 639–651. https://doi.org/10.1016/S0896-6273(01)00389-0
  • Shcherban I.V., Kosenko P.O., Shcherban O.G., Lobzenko P.V. Method of automatic search for odor-induced patterns in bioelectric activity of a rat olfactory bulb. Informatsionno-Upravliaiushchie Sistemy. 2020. V. 5. P. 62–69. https://doi.org/10.31799/1684-8853-2020-5-62-69
  • Shepelev I., Kiroy V., Scherban I., Kosenko P., Smolikov A., Saevskiy A. Tracking of informative gamma frequency range in local field potentials of anesthetized rat olfactory bulb for odor discrimination. Biomedical Signal Processing and Control. 2022. V. 71. P. 103139. https://doi.org/10.1016/j.bspc.2021.103139
  • von Stein A., Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology. 2000. V. 38 (3). P. 301–313. https://doi.org/10.1016/S0167-8760(00)00172-0
  • Wachowiak M. All in a Sniff: Olfaction as a Model for Active Sensing. Neuron. 2011. V. 71 (6). P. 962–973. https://doi.org/10.1016/j.neuron.2011.08.030
  • Wachowiak M., Shipley M.T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Seminars in Cell & Developmental Biology. 2006. V. 17 (4). P. 411–423. https://doi.org/10.1016/j.semcdb.2006.04.007
  • Yaeli S. Form-function relations in cone-tipped stimulating microelectrodes. Frontiers in Neuroengineering. 2009. V. 2. https://doi.org/10.3389/neuro.16.013.2009