• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

ЧТО ДАЛА АДАПТИВНАЯ ОПТИКА ДЛЯ ПОНИМАНИЯ МЕХАНИЗМОВ ЦВЕТОВОГО ЗРЕНИЯ ЧЕЛОВЕКА

© 2023 г. Е. М. Максимова

Федеральное государственное бюджетное учреждение науки Институт проблем передачи информации им. А.А. Харкевича Российской академии наук (ИППИ РАН) 127051 Москва, Большой Каретный переулок, д.19, Россия
maximova@iitp.ru

Поступила в редакцию 28.09.2022 г.

Кратко представлены сведения о цветовом зрении животных и человека, истории и методах его изучения. Описаны результаты фундаментальных исследований в этой области, полученные при помощи адаптивной оптики и сканирующей лазерной офтальмоскопии (AOSLO) в комплексе с денситометрией, фазочувствительной оптической когерентной томографией (AO-PSOCT) и кальциевым имаджингом (Ca++ imaging). Эти методы позволили впервые in vivo увидеть мозаику колбочек сетчатки человека, построить карты расположения колбочек трех разных типов (L, M, S), исследовать цветовосприятие человека в ответ на стимуляцию одиночных колбочек.

Ключевые слова: цветовое зрение, L колбочки, M колбочки, S колбочки, адаптивная оптика, дихромазии, цветокодирование

DOI: 10.31857/S0235009223010055  EDN: AUAGVN

Цитирование для раздела "Список литературы": Максимова Е. М. Что дала адаптивная оптика для понимания механизмов цветового зрения человека. Сенсорные системы. 2023. Т. 37. № 1. С. 17–34. doi: 10.31857/S0235009223010055
Цитирование для раздела "References": Maximova E. M. Chto dala adaptivnaya optika dlya ponimaniya mekhanizmov tsvetovogo zreniya cheloveka [What did adaptive optics give us for understanding the mechanisms of human color vision]. Sensornye sistemy [Sensory systems]. 2023. V. 37(1). P. 17–34 (in Russian). doi: 10.31857/S0235009223010055

Список литературы:

  • Бонгард М.М. Колориметрия на животных. Доклады Академии наук СССР. 1955. Т. 103. № 2. С. 239–242.
  • Бонгард М.М., Смирнов М.С. Четырехмерность цветового пространства человека. Доклады Академии наук СССР. 1956. Т. 108. № 3. С. 447–449.
  • Бонгард М.М., Смирнов М.С. Визуальная колориметрия методом замещения (новая система колориметра для исследования цветового зрения человека). Биофизика. 1957. Т. 2. № 1. С. 119–123.
  • Бонгард М.М., Смирнов М.С. Кривые спектральной чувствительности приемников, связанных с одиночными волокнами зрительного нерва лягушки. Биофизика. 1957. Т. 2. № 3. С. 336–342.
  • Бонгард М.М., Смирнов М.С. О “кожном зрении” Р. Кулешовой. Биофизика. 1965. Т. 10. № 1. С. 48–54.
  • Говардовский В.И., Астахова Л.А., Фирсов М.Л. Специфика физиологических и биохимических механизмов возбуждения и адаптации колбочек сетчатки. Сенсорные системы. 2015. Т. 29. № 4. С. 296–308.
  • Каламкаров Г.Р., Островский М.А. Молекулярные механизмы зрительной рецепции. М.: Наука, 2002. 279 с.
  • Кондрашев С.Л., Орлов О.Ю. Колориметрическое изучение цветового зрения травяной лягушки. Вестник Московского университета. Серия 6: биология, почвоведение. 1975. № 4. С. 107–110.
  • Максимова Е.М., Алипер А.Т., Дамянович И.З., Зайчикова А.А., Максимов П.В. Ганглиозные клетки с фоновой активностью сетчатки рыб и их возможная функция в оценке зрительной сцены. Российский физиологический журнал им. И.М. Сеченова. 2020. Т. 106. № 4. С. 486–503. https://doi.org/10.31857/S0869813920040044
  • Мазохин-Поршняков Г.А. Колориметрическое изучение свойств зрения стрекоз (электрофизиологическое исследование). Биофизика. 1959. Т. 4. № 4. С. 427–436.
  • Мазохин-Поршняков Г.А. Колориметрическое доказательство трихромазии пчелиных (на примере шмелей). Биофизика. 1962. Т. 7 (2). С. 211–217.
  • Нюберг Н.Д. Парадоксы цветного зрения. Природа. 1960. № 8. С. 53–59.
  • Овчинников Ю.А., Абдулаев Н.Г., Фейгина Н.Ю., Артамонов И.Д., Золотарев А.С. Полная аминокислотная последовательность зрительного родопсина. Биоорган. химия. 1982. Т. 8. № 10. С. 1424–1427.
  • Орлов О.Ю. Физиологические основы цветового зрения человека. Сб.: Клиническая физиология зрения. Очерки. Под ред. А.М. Шамшиновой, 3-е изд. М.: Научно-медицинская фирма МБН, 2006. С. 298–340.
  • Орлов О.Ю., Бызов А.Л. Колориметрическое исследование зрения головоногих моллюсков (Cephalopoda). Доклады АН СССР. 1961. Т. 139. № 3. С. 723–725.
  • Орлов О.Ю., Максимова Е.М. О роли внутриколбочковых светофильтров (механизм ЦЗ ящерицы и черепахи). Доклады АН СССР. 1964. Т. 154. № 2. С. 463–466.
  • Островский М.А., Говардовский В.И., Механизмы фоторецепции позвоночных. В кн.: “Физиология зрения”. М.: Наука, 1992. Гл. 1. С. 5–59.
  • Подугольникова Т.А., Максимов В.В. Регулярность пространственной структуры рецепторного и нервных слоев сетчатки костистых рыб: световая микроскопия. Зоологический журнал. 1973. Т. LII. Вып. 4. С. 541–551.
  • Подугольникова Т.А., Максимов В.В. Мозаика фоторецепторов и нервных элементов сетчатки рыб. Сб.Сенсорные системы. 1977. С. 178–196.
  • Смирнов M.C. Измерение волновой аберрации человеческого глаза. Биофизика. 1961. Т. 6. № 6. С. 687–703.
  • Ahnelt P.K., Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog Ret Eye Res. 2000. V. 19 (6). P. 711–777
  • Allison W.T., Barthel L.K., Skebo K.M., Takechi M., Kawamura S., Raymond P.A. Ontogeny of cone photoreceptor mosaics in zebrafish. J. Comp. Neurol. 2010. V. 518 (20). P. 4182–4195. https://doi.org/10.1002/cne.22447
  • Arrese C.A., Hart N.S., Thomas N., Beazley L.D., Shand J. Trichromacy in Australian marsupials. Curr. Biol. 2002. V. 12. P. 657–660. https://doi.org/10.1016/S0960-9822(02)00772-8
  • Arrese C.A., Beazley L.D., Neumeyer C. Behavioural evidence of marsupial trichromacy. Curr. Biol. 2006. V. 16. P. R193–R194. https://doi.org/10.1016/j.cub.2006.02.036
  • Baden T. Circuit mechanisms for colour vision in zebrafish. Review. Current Biology. 2021. V. 31. P. R807–R820. https://doi.org/10.1126/sciadv.abj6815
  • Baden T., Euler T., Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci. 2020. V. 21 (1). P. 5–20. https://doi.org/10.1038/s41583-019-0242-1
  • Baden T., Osorio D. The retinal basis of vertebrate color vision. Annu Rev Vis Sci. 2019. V. 5. P. 177–200. https://doi.org/10.1146/annurev-vision-091718-014926
  • Baden T., Schubert T., Chang L., Wei T., Zaichuk M., Wissinger B., Euler T. A tale of two retinal domains: Near-Optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron. 2013. V. 80 (5). P. 1206–1217. https://doi.org/10.1016/j.neuron.2013.09.030
  • Baraas R.C., Carroll J., Gunther K.L., Chung M., Williams D.R., Foster D.H., Neitz M. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan colorvision deficiency. J. Opt. Soc. Am. A. 2007. V. 24 (5). P. 1438–1447. https://doi.org/10.1364/josaa.24.001438
  • Bilotta J., Saszik S. The zebrafish as a model visual system. Int J Dev Neurosci. 2001. V. 19 (7). P. 621–629. https://doi.org/10.1016/s0736-5748(01)00050-8
  • Boycott B.B., Dowling J.E., Kolb H. Organization of the primate retina: light microscopy. Philos Trans R Soc Lond B Biol Sci. 1969. V. 255. P. 109–184. https://doi.org/10.1098/rstb.1969.0004
  • Bowmaker J.K., Dartnall H.J. Visual pigments of rods and cones in a human retina. J Physiol. 1980. V. 298. P. 501–511. https://doi.org/10.1113/jphysiol.1980.sp013097
  • Bowmaker J.K. Evolution of colour vision in vertebrates. Eye (Lond). 1998. V. 12. P. 541–547. https://doi.org/10.1038/eye.1998.143
  • Bowmaker J.K., Microspectrophotometry of vertebrate photoreceptors: A brief review. Vision Research. 1984. V. 24 (11). P. 1641–1650. https://doi.org/10.1016/0042-6989(84)90322-5
  • Campbell F.W. and Rushton W.A.H. Measurement of the scotopic pigment in the living human eye. J Physiol. 1955. V. 130 (1). P. 131–147. https://doi.org/10.1113/jphysiol.1955.sp005399
  • Carroll J., Neitz M., Hofer H., Neitz J., Williams D.R. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. PNAS. 2004. V. 101 (22). P. 8461–8466. https://doi.org/10.1073/pnas.0401440101
  • Collin S.P., Trezise A.E. The origins of colour vision in vertebrates. Clin Exp Optom. 2004. V. 87 (4–5). P. 217–223. https://doi.org/10.1111/j.1444-0938.2004.tb05051.x
  • Curcio C.A., Sloan K.R., Kalina R.E., Hendrickson A.E. Human photoreceptor topography. J. Comp Neurol. 1990. V. 292 (4). P. 497–523. https://doi.org/10.1002/cne.902920402
  • Curcio C.A., Allen K.A., Sloan K.R., Lerea C.L., Hurley J.B., Klock I.B., Milam A.H. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp Neurol. 1991. V. 312 (4). P. 610–624. https https://doi.org/10.1002/cne.903120411
  • Dacey D.M. Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res.1999. V. 18 (6). P. 737–763. https://doi.org/10.1016/s1350-9462(98)00013-5
  • Dacey D.M. Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 2000. V. 23. P. 743–775. https://doi.org/10.1146/annurev.neuro.23.1.743
  • Dacey D.M., Packer O.S. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr Opin Neurobiol. 2003.V. 13 (4). P. 421–427. https://doi.org/10.1016/s0959-4388(03)00103-x
  • Danilova M.V., Mollon J.D. Bongard and Smirnov on the tetrachromacy of extra-foveal vision. Vision Research. 2022. V. 195. P. 107952. https://doi.org/10.1016/j.visres.2021.08.007
  • Dartnall H.J.A., Bowmaker J.K., Mollon J.D. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc. R. Soc. Lond. B. Biol. Sci. 1983. V. 220 (1218). P. 115–130. https://doi.org/10.1098/rspb.1983.0091
  • Dominy N.J., Lucas P.W. Ecological importance of trichromatic vision to primates. Nature. 2001. V. 410 (6826). P. 363–366. https://doi.org/10.1038/35066567
  • Dowling J.E., Boycott B.B. Organization of the primate retina: electron microscopy. Proc. R. Soc. Lond. B. Biol. Sci. 1966. V. 166 (1002). P. 80–111. https://doi.org/10.1098/rspb.1966.0086
  • Dulai K.S., von Dornum M., Mollon J.D., Hunt D.M. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res. 1999. V. 9. P. 629–638. https://doi.org/10.1101/gr.9.7.629
  • Engstrom K. Cone Types and Cone Arrangement in the Retina of Some Cyprinids. Acta Zoologica. 1960. V. 41 (3). P. 277–295. https://doi.org/10.1111/j.1463-6395.1960.tb00481.x
  • Estévez O., Spekreijse H. The “silent substitution” method in visual research. Vision Research. 1982. V. 22. P. 681–69. https://doi.org/10.1016/0042-6989(82)90104-3
  • Field G.D., Gauthier J.L., Sher A., Greschner M., Machado T.A., Jepson L.H., Shlens J., Gunning D.E., Mathieson K., Dabrowski W., Paninski L., Litke A.M., Chichilnisky E.J. Functional connectivity in the retina at the resolution of photoreceptors. Nature. 2010. V. 467 (7316). P. 673–677. https://doi.org/10.1038/nature09424
  • Gehring W.J., Ikeo K. Pax 6: mastering eye morphogenesis and eye evolution. Trends in Genetics. 1999. V. 15 (9). P. 371–377. https://doi.org/10.1016/S0168-9525(99)01776-X
  • Gill J.S., Moosajee M., Dubis A.M. Cellular imaging of inherited retinal diseases using adaptive optics. Eye. 2019. V. 33. P. 1683–1698. https://doi.org/10.1038/s41433-019-0474-3
  • Govardovskii V.I., Fyhrquist N., Reuter T., Kuzmin D.G., Donner K. In search of the visual pigment template. Visual Neurosci. 2000. V. 17. P. 509–528. https://doi.org/10.1017/ S0952523800174036
  • Hampson K.M. Adaptive optics and vision. Journal of Modern Optics. 2008. V. 55. № 21. P. 3425–3467. https://doi.org/10.1080/09500340802541777
  • Hart N.S., Partridge J.C., Cuthill I.C., Bennett A.T. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.) J. Comp. Physiol. A. 2000. V. 186 (4). P. 375–387. https://doi.org/10.1007/s003590050437
  • Hartridge H. Cluster formation by the foveal cones. J. Physiol. 1946. V. 15. P. 105.
  • Hendrickson A. Organization of the Adult Primate Fovea. Macular Degeneration. Penfold P.L., Provis J.M. (eds). Berlin, Heidelberg. Springer, 2005. https://doi.org/10.1007/3-540-26977-0_1
  • Henriques L.D., Hauzman E., Bonci D.M.O., Chang B.S.W., Muniz J.A.P.C., Souza G.S., Silveira L.C.L., Galvão O.F., Goulart P.R.K., Ventura D.F. Uniform trichromacy in Alouatta caraya and Alouatta seniculus: behavioural and genetic colour vision evaluation. Front Zool. 2021. V. 18. P. 36 (1–10). https://doi.org/10.1186/s12983-021-00421-0
  • Hillmann D., Spahr H., Pfäffle C., Sudkamp H., Franke G., Hüttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. PNAS. 2016. V. 113 (46). P. 13138–13143. https://doi.org/10.1073/pnas.1606428113
  • Hofer H., Carroll J., Neitz J., Neitz M., Williams D.R. Organization of the Human Trichromatic Cone Mosaic. J. Neurosci. 2005. V. 19 (42). P. 9669–9679. https://doi.org/10.1523/JNEUROSCI.2414-05.2005
  • Hunt D.M., Dulai K.S., Cowing J.A., Julliot C., Mollon J.D., Bowmaker J.K., Li W.-H., Hewett-Emmett D. Molecular evolution of trichromacy in primates. Vision Res. 1998. V. 38 (21). P. 3299–3306. https://doi.org/10.1016/s0042-6989(97)00443-4
  • Jacobs G.H., Neitz J., Deegan J.F. Retinal receptors in rodents maximally sensitive to ultraviolet light Nature. 1991. V. 353. P. 655–656. https://doi.org/10.1038/353655a0
  • Jacobs G.H. Evolution of colour vision in mammals. Phil. Trans. R. Soc. B. 2009. V. 364 (1531). P. 2957–2967. https://doi.org/10.1098/rstb.2009.0039
  • Jacobs G.H. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision. Vis Neurosci. 2013. V. 30 (1–2). P. 39–53. https://doi.org/10.1017/S0952523812000429
  • Jacobs G.H., Neitz M., Neitz J. Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc. R. Soc. Lond. B. 1996. V. 263 (1371). P. 705–710. https://doi.org/10.1098/rspb.1996.0105
  • Jacobs G.H., Deegan J.F.D.I. Uniformity of colour vision in Old World monkeys. Proc. Biol. Sci. 1999. V. 266 (1432). P. 2023–2028. https://doi.org/10.1098/rspb.1999.0881
  • Keeler C.R. The Ophthalmoscope in the Lifetime of Hermann von Helmholtz. Arch Ophthalmol. 2002. V. 120 (2). P. 194–201. https://doi.org/10.1001/archopht.120.2.194
  • Kling A., Field G.D., Brainard D.H., Chichilnisky E.J. Probing Computation in the Primate Visual System at Single-Cone Resolution. Annu. Rev. Neurosci. 2019. V. 42. P. 169–186. https://doi.org/10.1146/annurev-neuro-070918-050233
  • Lakowski R. Theory and practice of colour vision testing: A Review. Part 2. British Journal of Industrial Medicine. 1969. V. 26 (4). P. 265–288. https://doi.org/10.1136/oem.26.4.265
  • Lee B.B. Paths to colour in the retina. Clin. Exp.Optom. 2004. V. 87. P. 239–248. https://doi.org/10.1111/j.1444-0938.2004.tb05054.x
  • Levenson D.H., Ponganis P.J., Crognale M.A., Deegan J.F. 2nd, Dizon A., Jacobs G.H. Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. 2006. V. 192 (8). P. 833–843. https://doi.org/10.1007/s00359-006-0121-x
  • Li Y.N., Tsujimura T., Kawamura S., Dowling J.E. Bipolar cell-photoreceptor connectivity in the zebrafish (Danio rerio) retina. J. Comp. Neurol. 2012. V. 520 (16). P. 3786–3802. https://doi.org/10.1002/cne.23168
  • Li P.H., Field G.D., Greschner M., Ahn D., Gunning D.E., Mathieson K., Sher A., Litke A.M., Chichilnisky E.J. Retinal representation of the elementary visual signal. Neuron. 2014. V. 81 (1). P. 130–139. https://doi.org/10.1016/j.neuron.2013.10.043
  • Marc R.E. The structure of vertebrate retinas. The Retinal Basis of Vision. Toyoda J. (ed.). Amsterdam. Elsevier, 1999. P. 3–19.
  • Marks W.B. Visual pigments of single goldfish cones. J. Physiol. 1965. V. 178 (1). P. 14–32. https://doi.org/10.1113/jphysiol.1965.sp007611
  • Maximov V. Colour vision in early vertebrates. Iugoslav. Physiol. Pharmacol. Acta. 1998. V. 34 (2). P. 343–349.
  • Maximov V. Environmental factors which may have led to the appearance of colour vision. Phil. Trans. R. Soc. Lond. B. 2000. V. 355. P. 1239–1242. https://doi.org/10.1098/rstb.2000.0675
  • McGregor J.E., Yin L., Yang Q., Godat T., Huynh K.T., Zhang J., Williams D.R., Merigan W.H. Functional architecture of the foveola revealed in the living primate. PLOS ONE. 2018. V. 13 (11). P. e0207102. https://doi.org/10.1371/journal.pone.0207102
  • Merino D., Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol. 2016. V. 10. P. 743–755. https://doi.org/10.2147/OPTH.S64458
  • Mollon J.D., Bowmaker J.K. The spatial arrangement of cones in the primate fovea. Nature.1992. V. 360 (6405). P. 677–679. https://doi.org/10.1038/360677a0
  • Movshon A. Animal models for visual neuroscience. Journal of Vision. 2014. V. 14 (15). P. 8. https://doi.org/10.1167/14.15.8
  • Nathans J., Thomas D., Hogness D.S. Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science. 1986. V. 232 (4747). P. 193–202. https://doi.org/10.1126/science.2937147
  • Orlov O.Yu., Maximova E.M. S-potential sources as excitation pools. Vision res. 1965. V. 5. P. 573–582. https://doi.org/10.1016/0042-6989(65)90032-5
  • Peichl L., Behrmann G., Kröger R. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur. J. Neurosci. 2001. V. 13. P. 1520–1528. https://doi.org/10.1046/j.0953-816x.2001.01533.x
  • Peichl L., Moutairou K. Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). Eur. J. Neurosci. 1998. V. 10 (8). P. 2586–2594. https://doi.org/10.1046/j.1460-9568.1998.00265.x
  • Peichl L. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol. 2005. V. 287 (1). P. 1001–1012. https://doi.org/10.1002/ar.a.20262
  • Polyak S.L. The Retina. Chicago, The Univercity of Chicago Press, 1941. 607 p.
  • Provis J.M., Dubis A.M., Maddess T., Carroll J. Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog Retin Eye Res. 2013. V. 35. P. 63–81. https://doi.org/10.1016/j.preteyeres.2013.01.005
  • Qiu Y., Zhao Z., Klindt D., Kautzky M., Szatko K.P., Schaeffel F., Rifai K., Franke K., Busse L., Euler T. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Curr Biol. 2021. V. 31 (15). P. 3233–3247. https://doi.org/10.1016/j.cub.2021.05.017
  • Ramon-Y-Cajal S. La rétine des vertébrés. Cellule. 1892. V. 9. P. 121–255.
  • Roorda A., Williams D.R. The arrangement of the three cone classes in the living human eye. Nature. 1999. V. 397 (6719). P. 520–522. https://doi.org/10.1038/17383
  • Roorda A., Metha A.B., Lennie P., Williams D.R. Packing arrangement of the three cone classes in primate retina. Vision Res. 2001. V. 41 (10–11). P. 1291–1306. https://doi.org/10.1016/s0042-6989(01)00043-8
  • Roorda A., Romero-Borja F., Donnelly W.J. III, Queener H., Hebert T.J., Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002. V. 10 (9). P. 405–412. https://doi.org/10.1364/OE.10.000405
  • Sabesan R., Hofer H.J., Roorda A. Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry. PLoS One. 2015. V. 10 (12). P. e0144891. https://doi.org/10.1371/journal.pone.0144891
  • Sabesan R., Schmidt B.P., Tuten W.S., Roorda A. The elementary representation of spatial and color vision in the human retina. Sci Adv. 2016. V. 2 (9). P. e1600797. https://doi.org/10.1126/sciadv.1600797
  • Schmidt B.P., Sabesan R., Tuten W.S., Neitz J., Roorda A. Sensations from a single M-cone depend on the activity of surrounding S-cones. Scientific REPORTS. 2018. V. 8. P. 8561. https://doi.org/10.1038/s41598-018-26754-1
  • Silveira L.C.L., Saito C.A., Filho M. da S., Kremers J., Bowmaker J.K., Lee B.B. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. PLOS ONE. 2014. V. 9 (11). P. e113321. https://doi.org/10.1371/journal.pone.0113321
  • Sincich L.C., Zhang Y., Tiruveedhula P., Horton J.C., Roorda A. Resolving single cone inputs to visual receptive fields. Nat Neurosci. 2009. V. 12 (8). P. 967–969. https://doi.org/10.1038/nn.2352
  • Solomon S.G., Lennie P. The machinery of colour vision. Nat Rev Neurosci. 2007. V. 8. P. 276–286. https://doi.org/10.1038/nrn2094
  • Stieb S.M., de Busserolles F., Carleton K.L., Cortesi F., Chung W.-S., Dalton B.E., Hammond L.A., Marshall N.J. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep. 2019. V. 9. P. 16459. https://doi.org/10.1038/s41598-019-52297-0
  • Thoreson W.B., Dacey D.M. Diverse cell t`ypes, circuits, and mechanisms for color vision in the vertebrate retina. Physiol Rev. 2019. V. 99 (3). P. 1527–1573. https://doi.org/10.1152/physrev.00027.2018
  • Toomey M.B., Corbo J.C. Evolution, development and function of vertebrate cone oil droplets. Front Neural Circuits. 2017. V. 11. P. 97. https://doi.org/10.3389/fncir.2017.00097
  • Wagner-Schuman M., Neitz J., Rha J., Williams D.R., Neitz M., Carroll J. Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions. Vision Res. 2010. V. 50 (23). P. 2396–2402. https://doi.org/10.1016/j.visres.2010.09.015
  • Walls G.L. The Vertebrate Eye and Its Adaptive Radiation. Bloomfield hills, mich., cranbrook institute of science. 1942. 814 p. https://doi.org/10.5962/bhl.title.7369
  • Wikler K.C., Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci. 1990. V. 10 (10). P. 3390–3401. https://doi.org/10.1523/JNEUROSCI.10-10-03390.1990
  • Williams D.R. Imaging single cells in the living retina. Vis. Res. 2011. V. 51 (13). P. 1379–1396. https://doi.org/10.1016/j.visres.2011.05.002
  • Williams D.R., Sekiguchi N., Haake W., Brainard D, Packer O. The cost of trichromacy for spatial vision. From Pigments to Perception: Advances in Understanding Visual Processes. Eds. Valberg A., Lee B.B. New York. Plenum Press, 1991. P. 11–22. https://doi.org/10.1007/978-1-4615-3718-2_2
  • Wilkie D., Hunt D.M., Bowmaker J.K. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vis. Res. 1999. V. 39 (17). P. 2801–2815. https://doi.org/10.1016/s0042-6989(99)00023-1
  • Wiesel T.N., Hubel D.H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966. V. 29 (6). P. 1115–1156. https://doi.org/10.1152/jn.1966.29.6.1115
  • Yin L., Masella B., Dalkara D., Zhang J., Flannery J.G., Schaffer D.V., Williams D.R., Merigan W.H. Imaging light responses of foveal ganglion cells in the living macaque eye. J. Neurosci. 2014. V. 34 (19). P. 6596–6605. https://doi.org/10.1523/JNEUROSCI.4438-13.2014
  • Yokoyama S., Yokoyama R. Adaptive evolution of photoreceptors and visual pigments in vertebrates. Ann Rev Ecol Sys. 1996. V. 27 (1). P. 543–567. https://doi.org/10.1146/annurev.ecolsys.27.1.543
  • Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res. 2000. V. 19 (4). P. 385–419. https://doi.org/10.1016/s1350-9462(00)00002-1
  • Yokoyama S. Molecular evolution of color vision in vertebrates. Gene2002. V. 300 (1–2). P. 69–78. https://doi.org/10.1016/s0378-1119(02)00845-4
  • Zeki S. and Marini L. Three cortical stages of colour processing in the human brain. Brain. 1998. V. 121. P. 1669–1685. https://doi.org/10.1093/brain/121.9.1669
  • Zhang F., Kurokawa K., Lassoued A., Crowell J.A., Miller D.T. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics. PNAS. 2019. V. 116(16). P. 7951–7956. https://doi.org/10.1371/journal.pone.0207102
  • Zhang F., Kurokawa K., Bernucci M.T., Jung H.W., Lassoued A., Crowell J.A., Neitz J., Neitz M., and Miller D.T. Revealing how color vision phenotype and genotype manifest in individual cone cells. Invest. Ophthalmol. Vis. Sci. 2021. V. 62 (2). Art. 8. https://doi.org/10.1167/iovs.62.2.8