• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

PROLAB: ПСИХОФИЗИЧЕСКИ РАВНОМЕРНАЯ ПРОЕКТИВНАЯ СИСТЕМА ЦВЕТОВЫХ КООРДИНАТ

© 2020 г. И. А. Коноваленко1,2, А. А. Смагина1, Д. П. Николаев1,2, П. П. Николаев1,3

1Институт проблем передачи информации им. А.А. Харкевича РАН 127051 Москва, Большой Каретный переулок, д. 19, Россия
konovalenko@smartengines.com
2ООО “Смарт Энджинс Сервис” 117312 Москва, проспект 60-летия Октября, д. 9, Россия
3Московский физико-технический институт 141701 г. Долгопрудный, Институтский переулок, д. 9, Россия

Поступила в редакцию 17.06.2020 г.

В работе предлагается ввести новое пространство цветовых координат proLab, связанное с CIE XYZ трехмерным проективным преобразованием. В статье показывается, что по психофизической равномерности, оцениваемой при помощи метрики STRESS по отношению к формуле цветовых различий CIEDE2000, предлагаемое пространство значительно опережает широко используемую систему координат CIELAB, хотя и уступает современной CAM16-UCS. Угловые метрики ошибок определения цветности, обычно используемые в линейных цветовых пространствах, могут использоваться и в proLab, поскольку проективное преобразование сохраняет линейность многообразий. При этом, в отличие от линейных пространств, угловые ошибки, различные по цветовому тону, в proLab нормированы в соответствии с порогами цветоразличения человека. В работе также показывается, что гетероскедастичность дробового шума в proLab оказывается меньшей, чем в CAM16-UCS и стандартных цветовых пространствах. Это делает proLab удобной координатной системой для линейного цветового анализа – решения задач линейной регрессии в цветовом пространстве.

Ключевые слова: цветовые пространства, цветовые различия, психофизическая равномерность, линейный цветовой анализ, проективные преобразования цвета, шум цветных изображений, гетероскедастичность шума

DOI: 10.31857/S0235009220040034

Цитирование для раздела "Список литературы": Коноваленко И. А., Смагина А. А., Николаев Д. П., Николаев П. П. Prolab: психофизически равномерная проективная система цветовых координат. Сенсорные системы. 2020. Т. 34. № 4. С. 307–328. doi: 10.31857/S0235009220040034
Цитирование для раздела "References": Konovalenko I. A., Smagina A. A., Nikolaev D. P., Nikolaev P. P. Prolab: psikhofizicheski ravnomernaya proektivnaya sistema tsvetovykh koordinat [Prolab: perceptually uniform projective colour coordinate system]. Sensornye sistemy [Sensory systems]. 2020. V. 34(4). P. 307–328 (in Russian). doi: 10.31857/S0235009220040034

Список литературы:

  • Alman D.H., Berns R.S., Komatsubara H., Li W., Luo M.R., Melgosa M., Nobbs J.H., Rigg B., Robertson A.R., Witt K. Commission Internationale de l’Eclairage. Improvement to industrial colour-difference evaluation. Central Bureau of the CIE, Vienna. 2001. № “Publication CIE 142-2001”.
  • Bäck T., Fogel D.B., Michalewicz Z. Handbook of Evolutionary Computation. IOP Publishing Ltd, 1997. 1130 p.
  • Bernd J. Digital Image Processing. Springer, 2005. 549 p.
  • Besl P.J., McKay N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992. V. 14 (2). P. 239–256. https://doi.org/10.1109/34.121791.
  • Bianco S., Bruna A. R., Naccari F., Schettini R. Color correction pipeline optimization for digital cameras. Journal of Electronic Imaging. 2013. V. 22 (2). P. 1–11. https://doi.org/10.1117/1.JEI.22.2.023014.
  • Bianco S., Schettini R. Two new von Kries based chromatic adaptation transforms found by numerical optimization. Color Research & Application. 2010. V. 35 (3). P. 184–192. https://doi.org/10.1002/col.20573.
  • Brill M.H. Image segmentation by object color: a unifying framework and connection to color constancy. J. Opt. Soc. Am. A. 1990. V. 7 (10). P. 2041–2047. https://doi.org/10.1364/JOSAA.7.002041.
  • Can Karaimer H., Brown M.S. Improving color reproduction accuracy on cameras. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018. P. 6440–6449. https://doi.org/10.1109/CVPR.2018.00674.
  • Cheng H.D., Jiang X.H., Sun Y., Wang J. Color image segmentation: advances and prospects. Pattern recognition. 2001. V. 34 (12). P. 2259–2281. https://doi.org/10.1016/S0031-3203(00)00149-7
  • The International Commission on Illumination. Technical Note: Brussels Session of the International Commission on Illumination. J. Opt. Soc. Am. 1960. V. 50. (1). P. 89–90. https://doi.org/10.1364/JOSA.50.000089
  • Fairchild M.D. Color appearance models. John Wiley & Sons Limited, 2013. 474 p. https://doi.org/10.1002/9781118653128.
  • Finlayson G.D., Funt B.V., Barnard K. Color constancy under varying illumination. Proceedings of IEEE International Conference on Computer Vision. 1995. P. 720–725. https://doi.org/10.1109/ICCV.1995.466867.
  • Finlayson G.D., Mackiewicz M., Hurlbert A. Color correction using root-polynomial regression. IEEE Transactions on Image Processing. 2015. V. 24 (5). P. 1460–1470. https://doi.org/10.1109/TIP.2015.2405336.
  • Finlayson G.D., Zakizadeh R. Reproduction angular error: An improved performance metric for illuminant estimation. Proceedings of British Machine Vision Conference. 2014. P. 1–11. https://doi.org/10.13140/RG.2.1.4625.6806.
  • Finlayson G., Gong H., Fisher R.B. Color homography: theory and applications. IEEE transactions on pattern analysis and machine intelligence. 2019. V. 41 (1). P. 20–33. https://doi.org/10.1109/TPAMI.2017.2760833.
  • García P.A., Huertas R., Melgosa M., Cui G. Measurement of the relationship between perceived and computed color differences. J. Opt. Soc. Am. A. 2007. V. 24 (7). P. 1823–1829. https://doi.org/10.1364/JOSAA.24.001823.
  • Gijsenij A., Gevers T., Van De Weijer J. Computational color constancy: Survey and experiments. IEEE Transactions on Image Processing. 2011. V. 20 (9). P. 2475–2489. https://doi.org/10.1109/TIP.2011.2118224.
  • Gong H., Finlayson G.D., Fisher R.B., Fang F. 3D color homography model for photo-realistic color transfer re-coding. The Visual Computer. 2019. V. 35 (3). P. 323–333. https://doi.org/10.1007/s00371-017-1462-x.
  • Grassmann H. Zur Theorie der Farbenmischung. Annalen der Physik. 1853. V. 165 (5). P. 69–84. https://doi.org/10.1002/andp.18531650505.
  • Hemrit G., Finlayson G.D., Gijsenij A., Gehler P., Bianco S., Funt B., Drew M., Shi L. Rehabilitating the colorchecker dataset for illuminant estimation. 26th Color and Imaging Conference Final Program and Proceedings. 2018. P. 350–353. https://doi.org/10.2352/ISSN.2169-2629.2018.26.350.
  • Hong G., Luo M.R., Rhodes P.A. A study of digital camera colorimetric characterization based on polynomial modeling. Color Research & Application. 2001. V. 26 (1). P. 76–84. https://doi.org/10.1002/1520-6378(200102)26:1<76::AID-COL8>3.0.CO;2-3.
  • Hunter R. Accuracy, Precision, and Stability of New Photoelectric Color-Difference Meter. J. Opt. Soc. Am. A. 1948. V. 38 (12). P. 1094–1094. https://doi.org/10.1364/JOSA.38.001092.
  • Klinker G.J., Shafer S.A., Kanade T. Image Segmentation And Reflection Analysis Through Color. Proc. SPIE 0937, Applications of Artificial Intelligence VI. 1988. V. 0937. P. 229–244. https://doi.org/10.1117/12.946980.
  • Konovalenko I., Smagina A., Kokhan V., Nikolaev D. ProLab: perceptually uniform projective colour coordinates system. The 25th Symposium of the International Colour Vision Society. Abstract Book. 2019. P. 70.
  • Kordecki A. Practical testing of irradiance-independent camera color calibration. Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018). 2019. V. 11041. P. 340–345. https://doi.org/10.1117/12.2522907.
  • Kruskal J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964. V. 29 (1). P. 1–27. https://doi.org/10.1007/BF02289565.
  • Kuehni R.G. Towards an improved uniform color space. Color Research & Application. 1999. V. 24 (4). P. 253–265. https://doi.org/10.1002/(SICI)1520- 6378(199908)24:4<253::AID-COL6>3.0.CO;2-#.
  • Lee H.-C. Method for computing the scene-illuminant chromaticity from specular highlights. J. Opt. Soc. Am. A. 1986. V. 3 (10). P. 1694–1699. https://doi.org/10.1364/JOSAA.3.001694.
  • Li C., Li Z., Wang Z., Xu Y., Luo M.R., Cui G., Melgosa M., Brill M.H., Pointer M. Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color Research & Application. 2017. V. 42 (6). P. 703–718. https://doi.org/10.1002/col.22131.
  • Liang J., Xiao K., Pointer M.R., Wan X., Li C. Spectra estimation from raw camera responses based on adaptive local-weighted linear regression. Optics express. 2019. V. 27 (4). P. 5165–5180. https://doi.org/10.1364/OE.27.005165.
  • Luo M.R. CIE Chromatic Adaptation; Comparison of von Kries, CIELAB, CMCCAT97 and CAT02. Encyclopedia of Color Science and Technology. Springer, 2014. P. 1–8. https://doi.org/10.1007/978-3-642-27851-8_321-1
  • Luo M.R., Cui G., Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Research & Application. 2001. V. 26 (5). P. 340–350. https://doi.org/10.1002/col.1049.
  • MacAdam D.L. Projective Transformations of I. C. I. Color Specifications. J. Opt. Soc. Am. A. 1937. V. 27 (8). P. 294–299. https://doi.org/10.1364/JOSA.27.000294.
  • MacAdam D.L. Visual Sensitivities to Color Differences in Daylight J. Opt. Soc. Am. A. 1942. V. 32 (5). P. 247–274. https://doi.org/10.1364/JOSA.32.000247.
  • Martí R., Lozano J.A., Mendiburu A., Hernando L. Multistart methods. Handbook of Heuristics. Springer International Publishing, 2018. P. 155–175. https://doi.org/10.1007/978-3-319-07124-4_1.
  • Maximov V.V. Transformatsiya tsveta pri izmenenii osveshcheniya [Transformation of colour under the changing illumination]. Moscow. Nauka Publ, 1984. 161 p. (in Russian).
  • McLaren K. XIII.–The development of the CIE. 1976 (L* a* b*) uniform colour space and colour-difference formula. Journal of the Society of Dyers and Colourists. 1976. V. 92 (9). P. 338–341. https://doi.org/10.1111/j.1478-4408.1976.tb03301.x.
  • Nikolaev D.P., Nikolayev P.P. Linear color segmentation and its implementation. Computer Vision and Image Understanding. 2004. V. 94 (1). P. 115–139. https://doi.org/10.1016/j.cviu.2003.10.012.
  • Nikolaev P.P. Some algorithms for surface color recognition. Simulation of learning and behavior, 1975. P. 121–151. (in Russian).
  • Nikonorov A.V. Spectrum shape elements model for correction of multichannel images. Computer Optics. 2014. V. 38 (2). P. 304–313. https://doi.org/10.18287/0134-2452-2014-38-2-304-313 (in Russian).
  • Nocedal J., Wright S.J. Numerical optimization. Springer, 2006. 685 p. https://doi.org/10.1007/978-0-387-40065-5
  • Ohta N., Robertson A.R. CIE Standard Colorimetric System. Colorimetry: Fundamentals and Applications. John Wiley & Sons Limited, 2006. Ch. 3. P. 63–114. https://doi.org/ 10.1002/0470094745.ch3.
  • Palchikova I.G., Smirnov E.S., Palchikov E.I. Quantization noise as a determinant for color thresholds in machine vision. J. Opt. Soc. Am. A. 2018. V. 35 (4). P. B214–B222. https://doi.org/10.1364/JOSAA.35.00B214.
  • Pan Q., Westland S. Comparative Evaluation of Color Differences between Color Palettes. 26th Color and Imaging Conference Final Program and Proceedings. 2018. P. 110–115. https://doi.org/10.2352/ISSN.2169-2629.2018.26.110.
  • Shafer S.A. Using color to separate reflection components. Color Research & Application. 1985. V. 10 (4). P. 210–218. https://doi.org/10.1002/col.5080100409.
  • Sharma G., Wu W., Dalal E.N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application. 2005. V. 30 (1). P. 21–30. https://doi.org/10.1002/col.20070.
  • Smagina A., Bozhkova V., Gladilin S., Nikolaev D. Linear colour segmentation revisited. Proc. SPIE 11041, Eleventh International Conference on Machine Vision (ICMV 2018). 2019. V. 11041. P. 107–119. https://doi.org/10.1117/12.2523007.
  • Smagina A., Ershov E., Grigoryev A. Multiple light source dataset for colour research. Proc. SPIE 11433, Twelfth International Conference on Machine Vision (ICMV 2019). 2020. V. 11433. P. 635–642. https://doi.org/10.1117/12.2559491.
  • Smith T., Guild J. The C.I.E. colorimetric standards and their use. Transactions of the Optical Society. 1931. V. 33 (3). P. 73–134. https://doi.org/10.1088/1475-4878/33/3/301.
  • Stokes M., Anderson M., Chandrasekar S., Motta R. A Standard Default Color Space for the Internet – sRGB, Version 1.10. International Color Consortium. 1996. URL: http://www.color.org/sRGB.xalter. (accessed: 29.08.2020).
  • Thomsen K. A Euclidean color space in high agreement with the CIE94 color difference formula. Color Research & Application. 2000. V. 25 (1). P. 64–65. https://doi.org/10.1002/(SICI)1520-6378(200002)25:1<64::AID-COL9>3.0.CO;2-B.
  • Toro J. Dichromatic illumination estimation without presegmentation. Pattern Recognition Letters. 2008. V. 29 (7). P. 871–877. https://doi.org/10.1016/j.patrec.2008.01.004.
  • Toro J., Funt B. A Multilinear Constraint on Dichromatic Planes for Illumination Estimation. IEEE Transactions on Image Processing. 2007. V. 16 (1). P. 92–97. https://doi.org/10.1109/TIP.2006.884953.
  • Urban P., Rosen M.R., Berns R.S., Schleicher D. Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A. 2007. V. 24 (6). P. 1516–1528. https://doi.org/10.1364/JOSAA.24.001516.
  • Vazquez-Corral J., Connah D., Bertalmío M. Perceptual color characterization of cameras. Sensors. 2014. V. 14 (12). P. 23205–23229. https://doi.org/10.3390/s141223205.
  • Vinogradova Yu.V., Nikolaev D.P., Slugin D.G. Image segmentation of color documents using color clustering. Journal of Information Technologies and Computing Systems. 2015 (2). P. 40–49. (in Russian).
  • Wallace G., Chen H., Li K. Color gamut matching for tiled display walls. EGVE '03: Proceedings of the workshop on Virtual environments 2003. 2003. P. 293–302. https://doi.org/10.1145/769953.769988.
  • Wang H., Cui G., Luo M. R., Xu H. Evaluation of colourdifference formulae for different colour-difference magnitudes. Color Research & Application. 2012. V. 37 (5). P. 316–325. https://doi.org/10.1002/col.20693.
  • Woo S., Lee S., Yoo J., Kim J. Improving Color Constancy in an Ambient Light Environment Using the Phong Reflection Model. IEEE Transactions on Image Processing. 2018. V. 27 (4). P. 1862–1877. https://doi.org/10.1109/TIP.2017.2785290.
  • Wyszecki G. Proposal for a New Color-Difference Formula. J. Opt. Soc. Am. A. 1963. V. 53 (11). P. 1318–1319. https://doi.org/10.1364/JOSA.53.001318.
  • Zickler T., Mallick S.P., Kriegman D.J., Belhumeur P.N. Color subspaces as photometric invariants. International Journal of Computer Vision. 2008. V. 79 (1). P. 13–30. https://doi.org/10.1007/s11263-007-0087-3.