• 1987 (Vol.1)

Ommochromes of the Compound Eye of Insects: Antiglycation Activity

© 2021 A. E. Dontsov, M. A. Yakovleva, M. A. Ostrovsky

N.M. Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, ul. Kosugina, 4, Russia

Received 02 Nov 2020

Ommochromes – screening and antioxidant organelles of the compound eye of invertebrates perform the function of light filtration, light absorption and antioxidant protection. In the present work, it was found for the first time that ommochromes exhibit antiglycation activity in vitro. Ommochromes were obtained from the eyes of three different insect families: Strationyidae, Sphingidae, and Acrididae. It was shown that all the studied ommochromes inhibited the reaction of formation of fluorescent products of serum albumin modification in the presence of high fructose concentrations (fructosylation). Ommochromes from the eyes of the black soldier fly (Hermetia illucens) were the most effective inhibitors of the fructosylation process. Ommochromes oxidized with hydrogen peroxide did not exhibit an inhibitory effect on the glycation process. The results obtained are of interest both for understanding the biological role of ommochromes in invertebrates, in particular for elucidating their effect on the oxidative modification of proteins of retinular and pigment cells of ommatidium, and for creating pharmacological preparations based on them for the treatment and prevention of pathologies associated with the development of metabolic syndrome.

Key words: ommochromes, insects, glycation, fructosylation

DOI: 10.31857/S0235009221010030

Cite: Dontsov A. E., Yakovleva M. A., Ostrovsky M. A. Ommokhromy slozhnogo glaza nasekomykh: antiglikiruyushchee deistvie [Ommochromes of the compound eye of insects: antiglycation activity]. Sensornye sistemy [Sensory systems]. 2021. V. 35(1). P. 3–10 (in Russian). doi: 10.31857/S0235009221010030

References:

  • Gribakin F.G., Chesnokova E.G. Ispolyzovanie glaznuch mutantov dly issledovaniy fiziologii zreniy nasekomuch [The use of eye mutants to study the physiology of insect vision]. (Uspechi sovremennoi biologii) [Advances in modern biology]. 1984. V. 97. P. 69–82 (in Russian).
  • Dontsov A.E., Zak P.P., Ostrovsky M.A., Vospelnikova N.D. Antiglykiruyschee deistvie melatonina [Antiglycation activity of melatonin]. (Doklady RAN) [Doklady Biochemistry and Biophysics]. 2017. V. 475 (1). P. 283–286 (in Russian).
  • Dontsov A.E., Sakina N.L., Kuznetsov Y.V., Ostrovsky M.A. Antioksidantnue I antiglikiruyschie svoistva N-acetilcysteinata-6-gidroxy-2-amino-benzotiazola [Antioxidant and antiglycation properties of 6-hydroxy-2-aminobenzothiazole N-acetylcysteinate]. (Chimicheskay fizika) [Russian Journal of Physical Chemistry B]. 2019. V. 13 (6). P. 947–950 (in Russian).
  • Dontsov A.E., Sakina N.L., Yakovleva M.A., Bastrakov A.I., Bastrakova I.G., Zagorinsky A.A., Ushakova N.A., Feldman T.B., Ostrovsky M.A. Ommochromu slochnogo dlaza nasekomuch, fiziko-chimicheskie svoistva I antyoksidantnay aktivnosti [Ommochromes of the complex eye of insects: physicochemical properties and antioxidant activity]. (Biochimiy) [Biochemistry]. 2020. V. 85 (6). P. 783–795 (in Russian).
  • Ostrovsky M.A., Dontsov A.E. Melanosomy glaza pozvonochnuch I ommochpomu glaza bespozvonochnuch kak antioksidantnue kletochnue opganellu [Vertebrate eye melanosomes and invertebrate eye ommochromes as antioxidant cell organelles: part 2]. (Izvestiy RAN, seriy biologicheskay) [Biology Bulletin]. 2019. V. 46 (1). P. 105–116 (in Russian).
  • Ostrovsky M.A., Zak P.P., Dontsov A.E. Melanosomu glaza pozvonochnuch I ommochpomu glaza bespozvonochnuch kak ekpanipuschie kletochnue opganellu [Vertebrate eye melanosomes and invertebrate eye ommochromes as screening cell organelles]. (Izvestiy RAN, seriy biologicheskay) [Biology Bulletin]. 2018. V. 45. № 6. P. 570–579 (in Russian).
  • Butenandt A., Schafer W. Recent Progress in the Chemistry of Natural and Synthetic Coloring Matters and Related Fields. Eds Gore T.S. Acad. Press. NY. USA. 1962. P. 13–34. https://doi.org/10.1177/004051756303300710
  • Butenandt A., Schiedt U., Biekert E. Uber Ommochrome, III. Mitteilung: Synthese des Xanthommatins. Eur. JOC. 1954. V. 258 (2). P. 106–116.
  • Chiu C.-J., Taylor A. Dietary hyperglycemia, glycemic index and metabolic retinal diseases. Prog. Retin. Eye Res. 2011. V. 30 (1). P. 18–53. https://doi.org/10.1016/j.preteyeres.2010.09.001
  • Dontsov A., Koromyslova A., Ostrovsky M., Sakina N. Lipofuscins prepared by modification of photoreceptor cells via glycation or lipid peroxidation show the similar phototoxicity. World J. Exp. Med. 2016. V. 6. P. 63–79.
  • Dontsov A.E., Fedorovich I.B., Lindstrom M., Ostrovsky M.A. Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta populations, with different light damage resistance. J. Comp. Physiol. B. 1999. V. 169. P. 157–164.
  • Dontsov A.E., Ostrovsky M.A. Screening Eye Pigments as Natural Antioxidants. Antioxidants in Systems of Varying Complexity: Chemical, Biochemical, and Biological Aspects. Eds Shishkina L.N. et al., CRC Press. Apple Acad. Press Inc. Oakville. Canada; Palm Bay. USA. 2019. P. 141–178.
  • Edeas M., Attaf D., Mailfert A.-S., Nasu M., Joubet R. Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants. Pathol. Biol (Paris). 2010. V. 58 (3). P. 220–225. https://doi.org/10.1016/j.patbio.2009.09.011
  • Farmer L.A., Haidasz E.A., Griesser M., and Pratt D.A. Phenoxazine: a privileged scaffold for radical-trapping antioxidants. J. Org. Chem. 2017. V. 82. P. 10523–10536. https://doi.org/10.1021/acs.joc.7b02025
  • Figon F., Casas J. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. Camb. Philos. Soc. 2019. V. 94. P. 156–183. https://doi.org/10.1111/brv.12441
  • Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv. Nutr. 2017. V. 8. P. 54–62. https://doi.org/10.3945/an.116.013912
  • Insausti T.C., LeGall M., and Lazzari C.R. Oxidative stress, photodamage and the role of screening pigments in insect eyes. J. Exp. Biol. 2013. V. 216. P. 3200–3207. https://doi.org/10.1242/jeb.082818
  • Langer H. Properties and functions of screening pigments in insect eyes. Photoreceptor optics. Berlin; New York: Springer. 1975. P. 429–455.
  • Lapolla A., Traldi P., Fedele D. Importance of measuring products of non-enzymatic glycation of proteins. Clinical Biochem. 2005. V. 38 (2). P. 103–115.
  • Linzen B. The tryptophan → ommochrome pathway in insects.I. Advances in insect physiology. Eds Treheme J.E. N.-Y. Acad. Press. 1974. V. 10. P. 117–246.
  • Ostrovsky M.A., Sakina N.L., Dontsov A.E. An antioxidative role of ocular screening pigments. Vis.Res. 1987. V. 27. P. 893–899. https://doi.org/10.1016/0042-6989(87)90005-8
  • Romero Y., Martinez A. Antiradical capacity of Ommochromes. J. Mol. Model. 2015. V. 21. P. 220. https://doi.org/10.1007/s00894-015-2773-3
  • Suarez G., Maturana J., Oronsky A.L., Raventos-Suarez C. Fructose-induced fluorescence generation of reductively methylated glycated bovine serum albumin: evidence for nonenzymatic glycation of Amadori adducts. Biochim. Biophys. Acta. 1991. V. 1075. P. 12–19.
  • Uchiki T., Weikel K.A., Jiao W., Shang F., Caceres A., Pawlak D., Handa J.T., Brownlee M., Nagaraj R., Taylor A. Glycation-altered proteolysis as a pathobiological mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell. 2012. V. 11 (1). P. 1–13. https://doi.org/10.1111/j.1474-9726.2011.00752.x
  • Ushakova N., Dontsov A., Sakina N., Bastrakov A., Ostrovsky M. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetiaillucens. Biomolecules. 2019. V. 9 (9). P. 408. https://doi.org/10.3390/biom9090408