• 2021 (Vol.35)

The effect of local diascleral stimulation of the extreme and middle peripheral parts of the retina on foveal contrast sensitivity and color recognition

© 2018 G. I. Rozhkova, S. I. Rychkova, M. A. Gracheva, A. V. Belokopytov, E. N. Iomdina

Institute for Information Transmission Problems RAS, 127051 Moscow, Bolshoi Karetny lane, 19, Russia
Moscow Helmholtz Research Institute of Eye Diseases, 105062 Moscow, ul. Sadovaya-Chernogryazskaya, 14/19, Russia

Received 02 Mar 2018

To verify the hypothesis of A.L. Yarbus about a specific role of the extreme retinal periphery in colour perception, we compared changes in foveal vision caused by local diascleral stimulation of the loci at the extreme periphery and mid- periphery of the retina. Two series of experiments were carried out aimed at assessment of contrast sensitivity and colour recognition The foveal test stimuli were sinewave gratings and sets of images from the charts for colour vision investigation. The subjects were 6 adolescents 14–18 years old with normal colour vision. To provide correct comparison of the effects, it was necessary to equalize stimulation of photoreceptors at the extreme and mid-peripheral retinal loci. Since, at the level of photoreceptors, direct measurements seemed to be impossible, a preliminary series of experiments was carried out to assess the resulting intensity of the light stimulus for photoreceptors after passing through scleral and other eye tunics on the basis of pupil contraction. In two main experimental series, it has been found that stimulation of the extreme retinal periphery exerts larger influence on foveal contrast sensitivity and colour recognition than comparable stimulation of mid-periphery. In our experimental conditions, the minimal values of the initial contrast thresholds were found in the range 1–4 cpd; diascleral stimulation of the extreme retinal periphery and mid-periphery resulted in increase of these thresholds by 6–15 times vs 3–6 times. Negative effect on colour recognition was also significantly larger in the case of the extreme periphery stimulation. The data obtained evidence in favor of Yarbus’s hypothesis, however, these data can’t be considered as the proofs of its trueness since other explanations are also possible.

Key words: diascleral stimulation, colour constancy, pupil response, contrast sensitivity, colour recognition, extreme retinal periphery, foveal vision

DOI: 10.1134/S0235009218040108

Cite: Rozhkova G. I., Rychkova S. I., Gracheva M. A., Belokopytov A. V., Iomdina E. N. Vliyanie lokalnoi diaskleralnoi stimulyatsii krainei i srednei periferii setchatki na fovealnuyu kontrastnuyu chuvstvitelnost i tsvetorazlichenie [The effect of local diascleral stimulation of the extreme and middle peripheral parts of the retina on foveal contrast sensitivity and color recognition]. Sensornye sistemy [Sensory systems]. 2018. V. 32(4). P. 310-320 (in Russian). doi: 10.1134/S0235009218040108

References:

  • Bashkatov A.I., Genina E.A., Kochubej V.I., Tuchin V.V. Opticheskie svoistva sklery glaza cheloveka v spektral'nom diapazone 370–2500 nm [Optical properties of a human eye in a spectral range 370–2500 nm]. Optics and spectroscopy. 2010. V. 109 (2). P. 226–234 (in Russian).
  • Iomdina E.N., Bauer S.M., Kotlyar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow. “Real time”. 2015. 208 p. (in Russian).
  • Morozov V.I., Yakovlev A.A. Zabolevaniya zritel’nogo puti: Klinika. Diagnostika. Lechenie. [Visual pathways pathology: clinical aspects, diagnostics, and treatment]. Moscow, BINOM. 2010. 680 p. (in Russian).
  • Panova I.G., Poltavtseva R.A., Rozhkova G.I. Morfologicheskaya kharakteristika razvitiya krainei periferii setchatki v oblasti ora serrata [Characteristics of morphological development of the extreme retinal periphery near ora serrata]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (4). P. 302–309 (in Russian).
  • Rabkin E.B. Polikhromaticheskie tablitsy dlya issledovaniya tsvetooshchushcheniya [Polichromatic tables for color perception investigation]. Moscow “Meditsina”. 1971. 72 p. (in Russian).
  • Rozhkova G.I., Belokopytov A.V., Gracheva M.A. Zagadki slepoi zony i kol’tsa povyshennoi plotnosti kolbochek na krainei periferii setchatki [Mysteries of the blind zone and cone-enriched rim at the periphery of the human retina]. Sensornye sistemy [Sensory systems]. 2016. V. 30(4). P. 263–281. (in Russian).
  • Rozhkova G.I., Tokareva V.S. Tablitsy i testy dlya otsenki zritel’nykh sposobnostei [Tables and tests for visual functions assessment]. Moscow, Gumanit. izd. tsentr VLADOS. 2001. 104 p. (in Russian).
  • Somov E.E. Metody oftal’moergonomiki [Methods of ophthalmoergonomics]. Leningrad, Nauka, 1989. 157 p. (in Russian).
  • Shelepin Yu.E., Kolesnikova L.N., Levkovich Yu.I. Vizokontrastometriya: Izmerenie prostranstvennykh peredatochnykh funktsii zritel’noi sistemy [Visual acuity and assessment of contrast: assessment of transmission functions in visual system]. Leningrad, Nauka, 1985. 103 p. (in Russian).
  • Yarbus A.L. Eye movements and vision. 1967. New York: Plenum Press. 222 p.
  • Yarbus A.L. Human visual system. I. Adequate visual stimulus. Biophysics. 1975. V. 20 (5). P. 916–919 (in Russian)
  • Yarbus A.L. Human visual system. II. The perceived colour. Biophysics. 1975. V. 20 (6). P. 1099–1104 (in Russian).
  • Yarbus A.L. Human visual system. III. The space of colour sensations. Biophysics. 1976. V. 21 (1). P. 150–152 (in Russian).
  • Yarbus A.L. Human visual system. IV. Opposite color difference and anticolor. The first series of experiments. Biophysics. 1976. V. 21 (4). P. 735–738 (in Russian).
  • Yarbus A.L. Human visual system. V. Opposite color difference and anticolor. The second series of experiments. Biophysics. 1976. V. 21 (5). P. 913–916 (in Russian).
  • Yarbus A.L. Human visual system. VI. Opposite color difference and anticolor. The third series of experiments. Biophysics. 1977. V. 22 (1). P. 123–126 (in Russian).
  • Yarbus A.L. Human visual system. VII. Opposite color difference and anticolor. Fourth series of experiments. Biophysics. 1977. V. 22 (2). P. 328–333 (in Russian).
  • Yarbus A.L. Human visual system. VIII. Description of colour transformations by means of vector algebra. Biophysics. 1977. V. 22 (6). P. 1087–1094 (in Russian).
  • Brændstrup P. The functional and anatomical differences between the nasal and temporal parts of the retina. Acta Ophthalmol. 1948. V. 26 (3). P. 351–361.
  • Dacey D.M. Parallel pathways for spectral coding in primate retina. Annual Rev. Neurosci. 2000. V. 23. P. 743–775.
  • Donders F. C. Die Grenzen des Gesichtsfeldes in Beziehung zudenen der Netzhaut. Albrecht. v. Graef’s Arch f. Ophthal. 1877. V. 23. P. 255–280.
  • Fernald R.D. Retinal rod neurogenesis. In Development of the Vertebrate Retina. Eds. Finlay B.L., Sengelaub D.R. New York: Plenum Press. 1988. P. 31–42.
  • Fry G.A., Alpern M. The effect on foveal vision produced by a spot of light on the sclera near the margin of the retina. JOSA. 1953. V. 43 (3). P. 187–188.
  • Lia B., Williams R.W., Chalupa L.M. Formation of retinal ganglion cell topography during prenatal development. Science. 1987. V. 236. P. 848–851.
  • Maggiore L. L’ora serrata nell’occhio umano. Ann. ottal. 1924. V. 52. P. 625–723.
  • Mollon J.D., Regan B.C., Bowmaker J.K. What is the function of the cone-rich rim of the retina. Eye. 1998. V. 12 (Pt 3b). P. 548–552.
  • Pikler J. Das Augenhtillenlicht als Mass der Farben. Zeits. f. Psychol. 1931. B. 120 (189).
  • Polyak S.L. The retina. Chicago: Univ. Chicago Press. 1941. 607 p.
  • Roh S., Weiter J.J., Duker J.S. Ocular circulation. Chapter 5. In: Tasman W., Jaeger E.A., eds. Duane’s Clinical Ophthalmology. Hagerstown: Lippincott Williams & Wilkins. 2007. P. 1–20.
  • Schouten J.F., Ornstein L.S. Measurements on Direct and Indirect Adaptation by Means of a Binocular Method. JOSA. 1939. V. 29. P. 168–182.
  • To M.P.S., Regan B.C., Wood D., Mollon J.D. Vision out of the corner of the eye. Vision Research. 2011. V. 51 (1). P. 203–214.
  • Weiter J.J., Ernest J.T. Anatomy of the choroidal vasculature. Am. J. Ophthalmol. 1974. V. 78. 583 p.
  • Williams R.W. The human retina has a cone-enriched rim. Vis. Neurosci. 1991. V. 6 (4). P. 403–406.