• 2021 (Vol.35)

Eye optics and retinal topography in the Eurasian beaver Castor fiber L.

© 2017 A. M. Mass, A. Ya. Supin

Institute of Ecology and Evolution RAS 119071 Moscow, Leninsky prospect, 33

Received 15 Feb 2017

Eye optics, retinal topography, and sizes of retinal ganglion cells were investigated in the Eurasian beaver Castor ber L. Eye optics provides emmetropy in air with the image scale of 8.9 mm/rad and hypermetropy underwater with the image scale of 4.75 mm/rad. Distribution of retinal ganglion cells in retinal wholemounts features a visual streak with increase cell density. In the visual streak, cell the maximum cell density was from 1200 to 2240 cells/mm2 for di erent wholemounts, mean 1700 cells/mm2. This density of ganglion cells results in the retinal resolution of 0.15o (9’, 3.3 cycle/deg). This value can be assumed the visual acuity in air. Underwater, the visual acuity is markedly less due to the lesser image scale and defocusing. Ganglion cell sizes varied from 7 to 29 μm, mean 14.9 μm in the high-density area and 14.3 μm in the low-density area. The visual system of the beaver is adapted to the aerial vision and is not ambivalent.

Key words: beaver, vision, retina, visual acuity

Cite: Mass A. M., Supin A. Ya. Opticheskaya sistema glaza i retinalnaya topografiya evraziiskogo bobra castor fiber l. [Eye optics and retinal topography in the eurasian beaver castor fiber l.]. Sensornye sistemy [Sensory systems]. 2017. V. 31(3). P. 191-201 (in Russian).

References:

  • Mass A.M. Structural and functional basis of ambivalent (aerial-aquatic) vision in aquatic mammals //Sensory systems. 2015. V. 29. P. 321– 340 [in Russian]
  • Mass A.M., Supin A. Ya. Estimates of underwater and aerial visual acuity in the European beaver (Castor fiber L.) by morphological data // Doklady RAN. 2017. V. 423. No 2. P. 1–5 [in Russian]
  • Chkolnik -Yarros E.G., Kalinina A.B. Neurons of the Retina M.: Nauka, 1986. 204 p. [in Russian]
  • Cleland B.G., Harging T.H., Tuluna-Kiseey U. Visual resolution and receptive eld size: examination of two kinds of cats retinal ganglion cell //Science. 1979. V. 205. P. 105–1017.
  • Collin S. P., Pettigrew J. D. Retinal ganglion cell topography in teleosts: A comparison between Nissl-stained material and retrograde labeling from the optic nerve // J. Comp. Neurol. 1988. V. 276. P. 412–422.
  • Hanke F. D., Peichl L., Dehnhardt G. Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina) // Brain Behav. Evol. 2009. V. 74. P. 102–109.
  • Harris L. R. Contrast sensitivity and acuity of a conscious cat measured by the occipital evoked potential // Vision Res. 1978. V. 18. P. 175–178.
  • Hebel R. Distribution of retinal ganglion cells in five mammalian species (pig, sheep, horse, dog) // Anat. Embryol. 1976. V. 150. P. 45–51.
  • Hebel R., Hollander H. Size and distribution of ganglion cells in the bovine retina // Vision Res. 1979. V. 19. P. 667–674.
  • Herman L. M., Peacock M. F., Yunker M. P., Madsen C.J. Bottlenosed dolphin: Double-split pupil yields equivalent aerial and underwater diurnal acuity // Science. 1975. V. 189. P. 650–652.
  • Hughes A. Topographical relationship between the anatomy and physiology of the rabbit visual system // Docum. Opht. 1971. V. 30. P. 33–159.
  • Hughes A. A schematic eye of the rabbit // Vision Res. 1972. V. 12. P. 123–138.
  • Hughes A. The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization // Handbook of Sensory Physiology: The Visual System in Vertebrates / Ed. Crescitelli F. Berlin. Springer, 1977. V. VII/5. P. 613–756.
  • Hughes A. Population magnitudes and distribution of the major modal classes of cat retinal ganglion cells as estimated from HRP lling and systematic survey of the soma diameter spectra for classical neurons // J. Comp. Neurol. 1981. V. 197. P. 303–339.
  • Hughes A. New perspectives in retinal organization // Progress in Retinal Research/ Eds. Osborne N., Chader G., V. 4. Oxford: Pergamon, 1985. P. 243–313.
  • Long K.O., Fisher S. K. The distribution of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi // J. Comp. Neurol. 1983. V. 221. P. 329–340.
  • Mass A. M. Retinal topography in the walrus (Odobenus rosmarus divergence) and fur seal (Callorhinus ursinus) // Marine Mammal Sensory Systems / Eds J. A. Thomas, R.A. Kastelein, A. Ya., Supin, New York: Plenum, 1992. P. 119–135.
  • Mass A. M., Supin A. Ya. Ganglion cell topography of the retina in the bottlenose dolphin, Tursiops truncatus // Brain Behav. Evol. 1995. V. 45. P. 257–265
  • Mass A. M., Supin A. Ya. Ganglion cell density and retinal resolution in the sea otter, Enhydra lutris // Brain Behav. Evol. 2000. V. 55. P. 111–119.
  • Mass A. M., Supin A. Ya. Retinal topography of the harp seal (Pagophilus groenlandicus) // Brain Behav. Evol. 2003. V. 62. P. 212–222.
  • Mass A. M., Supin A. Ya. Adaptive features of aquatic mammal’s eye // Anat. Rec. 2007. V. 290. P. 701–715
  • Mass A. M., Supin A. Ya. Retinal ganglion cell layer of the Caspian seal (Pusa caspica): topography and localization of the high resolution area // Brain Behav. Evol. 2010. V. 76. P. 144–153.
  • Munk O. On the occurrence and signi cance of horizontal band-shaped retina in teleosts. Vidensk. Meddr. Dansk // Naturn Foren.1970. V. 133. P. 85–120.
  • Oyster C.V., Takahashi E.S., Hurst D.C. Density, soma size and regional distribution of rabbit retinal ganglion cells // J. Neurosci.1981. V.1. P. 1331–1346.
  • Peichl L. Topography of ganglion cells in the dog and wolf retina // J. Comp. Neurol. 1992. V. 324. P. 603–620.
  • Pettigrew J.D., Dreher B., Hopkins C.S., McCall M.J., Brown M. Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity // Brain Behav. Evol. 1988. V. 32. P. 39–56.
  • Provis J. M. The distribution and size of the ganglion cells in the retina of the pigmented rabbit: A quantitative analysis // J. Comp. Neurol. 1979. V. 185. P. 121–137.
  • Schmid K. L., Schmid L.M., Wildsoet C.F., Pettigrew J.D. Retinal topography in the Koala (Phascolarctos cinereus) // Brain Behav. Evol. 1992. V. 39. P. 8–16.
  • Silveira L.C.L., Picanco-Diniz C.W., Oswaldo-Cruz E. Distribution and size of ganglion cells in the retina of large Amazon rodents // Visual Neuroscience. 1989. V. 2. P. 221–235.
  • Stone J. The number and distribution of ganglion cells in the cat’s retina // J. Comp. Neurol. 1978. V. 180. P. 753–772.
  • Stone J. The wholemount handbook. A guide to the preparation and analysis of retinal wholemounts. Sidney: Maitland, 1981.
  • Stone J., Halasz P. Topography of the retina in the elephant Loxodonta Africana // Brain Behav. Evol. 1989. V. 34. P. 84–95.
  • Stone J., Keens J. Distribution of small and medium-sized ganglion cells in the cat’s retina // J. Comp. Neurol. 1980. V. 192. P. 235–245.
  • Tancred E. The distribution and sizes of ganglion cells in the retinas of ve Australian marsupials // J. Comp. Neurol. 1981. V. 196. P. 585–603.
  • Wakakuva K., Washida A., Fukuda Y. Distribution and soma size of ganglion cells in the retina of the eastern chipmunk (Tamias sibiricus asiaticus) // Vision Res. 1985. V. 25. P. 877–885.