• 1987 (Vol.1)

Individual optimization of functional treatment in the cases of impaired binocular vision

© 2015 G. I. Rozhkova1,2, S. I. Rychkova2, M. A. Gracheva1,2, H. P. Tahchidi1

1Russian National Research Medical University named after N.I. Pirogov 117997, Moscow, ul.Ostrovitjanova 1
2Institute for Information Transmission Problems (Kharkevich Institute), RAS 127994 Moscow, B.Karetny per., 19

Received 15 May 2015

The paper presents comparative analysis of the results obtained in the course of functional treatment aimed at development of binocular fusion and accommodation in subjects with impaired binocular vision and refractive anomalies. The subjects include patients with convergent strabismus accompanied by hypermetropia and divergent strabismus accompanied by myopia. The effect of training was assessed calculating the difference in the values of binocular visual acuity and accommodation measured before and after the treatment. The measurements were performed at three observation distances: 0.5, 1.0 and 5.0 m. In a majority of subjects, the greatest improvement of visual acuity as a result of training was revealed for the distance 1.0 m independently of the type of strabismus and refractive anomaly, however, individual results varied significantly. The average increase in binocular accommodation volume was approximately the same for all distances but the extreme individual values differed more than twice. To obtain progress, each subject was given individual optical correction changing systematically during the course of training. In particular, at the beginning of treatment, in binocular viewing conditions, the subjects usually needed hypercorrection of refraction, the power of the optimal lens being 3–4 D larger than the optimal power for monocular conditions. The revealed dependence of the positive effect on conditions of training and on individual characteristics of the subjects’ vision allow some general and particular recommendations concerning optimization of treatment procedures.

Key words: binocular vision, fusion, accommodation, visual acuity, functional correction, individual variability

Cite: Rozhkova G. I., Rychkova S. I., Gracheva M. A., Tahchidi H. P. Individualnaya optimizatsiya funktsionalnoi korrektsii narushennogo binokulyarnogo zreniya [Individual optimization of functional treatment in the cases of impaired binocular vision]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 341-353 (in Russian).

References:

  • Аветисов С.Э., Кащенко Т.П., Шамшинова А.М. (ред.) Зрительные функции и их коррекция у детей. М.: ОАО “Издательство “Медицина”. 2005. 872 с.
  • Дашевский А.И. Ложная близорукость. М.: “Медицина”, 1973. 152 с.
  • Кононова Н.Е., Кононов В.М. Использование гиперкоррекции в лечении содружественного сходящегося косоглазия у детей // IX-й Съезд офтальмологов России, Москва, 16–18 июня 2010 г.
  • Могилев Л.Н. Бинариметр. “Открытия, изобретения, промышленные образцы, товарные знаки”. Авт. Свид. 596220 // Б.И. 1978. Т 70. No 8. С. 14.
  • Рожкова Г.И., Токарева В.С., Николаев Д.П., Огнивов В.В. Основные типы зависимости остроты зрения от расстояния у человека в разном возрасте по результатам дискриминантного анализа // Сенсорные системы. 2004. Т. 18. No 4. С. 330–338.
  • Рожкова Г.И., Матвеев С.Г. Зрение детей; проблемы оценки и функциональной коррекции. М.: Наука. 2007. 315 с.
  • Рычкова С.И., Рожкова Г.И. Острота зрения, аккомодация и оптимальная оптическая коррекция при косоглазии в постоперационном периоде // Сенсорные системы. 2009. Т. 23. No 1. С. 24–39.
  • Рожкова Г.И., Лозинский И.Т., Грачева М.А., Большаков А.С., Воробьев А.В., Сенько И.В., Белокопытов А.В. Функциональная коррекция нарушенного бинокулярного зрения: преимущества использования новых компьютерных технологий // Сенсорные системы. 2015. Т. 29. No2. С. 99–121.
  • Тарутта Е.П., Вержанская Т.Ю. Возможные механизмы тормозящего влияния ортокератологических линз на прогрессирование миопии // Российский офтальмологический журнал. 2008. Т. 1, No 2. С. 26– 30.
  • Филинова О.Б. Изучение влияния постоянной слабомиопической дефокусировки изображения на динамику рефракции, бинокулярные функции и рост глаза у детей // Автореф. дисс. ... канд. мед. наук. Москва. 2009. 26 с.
  • Шаповалов С.Л., Милявская Т.И., Игнатьев С.А., Корнюшина Т.А. Бинокулярные функции при аметропиях. М.: МИК. 2014. 176 c.
  • Asper L., Crewther D., Crewther S.G. Strabismic amplyopia. Part 1: Psychophysics // Clin. Exp. Optom. 2000a. V. 83 (2). P. 49–58.
  • Asper L., Crewther D.,Crewther S.G. Strabismic amblyopia. Part 2: Neural processing // Clin. Experim. Optometry. 2000b. V. 83(4). P. 200–211.
  • Buehren T., Collins M. J. Accommodation stimulus-response function and retinal image quality // Vision Research. 2006. V. 46(10). P. 1633–1645.
  • Buehren T. Collins M. J., Davis B. Potential higher-order aberration cues for sphero-cylindrical refractive error development //Optometry & Vision Science. 2007. V. 84 (3). P. 163–174.
  • Campbell F. W., Hess R. F., Watson P. G., Banks R. Preliminary results of a physiologically based treatment of amblyopia// British Journal of Ophthalmology. 1978. V. 62. P. 748–755.
  • Herbison N., Cobb S., Gregson R., Ash I., Eastgate R., Purdy J., Hepburn T., MacKeith D., Foss A. Interactive binocular treatment (I-BiT) for amblyopia: results of a pilot study of 3D shutter glasses system // Eye (London, England). 2013. V. 27(9). P. 1077–83.
  • Heron G., Furby H.P., Walker R.J., Lane C.S., Judge O.J. E. Relationship between visual acuity and observation distance // Ophthalmol. Physiol. Optics. 1995. V. 15(1). P. 23–30.
  • Hess R.F. Thompson B. New insights into amblyopia: binocular therapy and noninvasive brain stimulation // J. AAPOS: The Official Publ. Am. Assoc. Pediatric Ophtalmol. Strabismus. 2013. V. 17 (1). P. 89–93.
  • Hess R. F., Mansouri B., Thompson B. A binocular approach to treating amblyopia: antisuppression therapy// Optometry and Vision Science: Official Publication of the American Academy of Optometry. 2010. V. 87(9). P. 697–704.
  • Koskela P. U. Contrast sensitivity in amblyopia. II. Changes during pleoptic treatment // Acta Ophthalmol. 1986. V. 64. P. 563–569.
  • Kulp M. T., Cotter S. A., Connor A. J., Clarke M. P. Should amblyopia be treated? // Ophthalmol. Physiol. Optics. 2014. V. 34(2). P. 226–232.
  • Leguire L. E., Rogers G. L., Bremer D. L. Amblyopia: The normal eye is not normal // J. Ped. Ophthalmol. Srtab. 1990. V. 27. P. 32–38.
  • Lennarson L.W., France T.D., Portnoy J., Scott W.E. A comparison of distance and near vision in amblyopia // Transact. Fifth Internat. Orthoptic Congress. Lyon, France: LIPS. 1984. P. 329–336.
  • Li J., Thompson B., Deng D., Chan L.Y., Yu V., Hess R.F. Dichopyic training enables the adult amblyopic brain to learn // Current Biology. 2013. V. 23(8). P.R 308– R309.
  • Li S.L., Jost R.M., Morale S.E., Stager D.R., Dao l., Stager D., Birch E.E. A binocular iPad treatement for amblyopic children // Eye. 2014. V. 28(10). P. 1246–1253.
  • Lyle T.K., Foley J. Prognosis in cases of strabismus with special reference to orthoptic treatment // The British Journal of Ophthalmology. 1957. V. 41(3). P. 129–152.
  • Powers M.K. Improving visual skills. A new internet application // J. Modern Optics. 2006. V. 53. P. 1313–1323.
  • Powers M.K., Grisham J.D., Wurm J.K., Wurm W.C. Improving visual skills: II. Remote assessment via Internet // Optometry. 2009. V. 80(2). P. 61–69.
  • Qiu F., Wang L., Liu Y., Yu L. Interactive binocular amblyopia treatment system with full-field vision based on virtual reality // IEEE. 2007. P. 1257–1260.
  • Rastegarpour A. A computer-based anaglyphic system for the treatment of amblyopia // Clinical Ophthalmology. 2011. V. 5. P. 1319–1323.
  • Read S.A., Collins M.J., Carney L.G. A review of astigmatism and its possible genesis //Clinical and Experimental Optometry. 2007. V. 90 (1). P. 5–19.
  • Rozhkova G.I., Podugolnokova T.A., Vasiljeva N.N. Visual acuity in 5–7-year-old children: individual variability and dependence on observation distance // Ophthalmol. Physiol. Opt. 2005. V. 25. P. 66–80.
  • Rozhkova G. I., Zhukova E. A., Tokareva V. S. Relationship between distance dependence of visual acuity and refraction in junior school children // Сенсорные системы. 2007. Т. 21. No 1. С. 55–71.
  • Schmid K. L., Wildsoet C. F. Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve section in chicks //Vision Res. 1996. V. 36(7). P. 1023–1036.
  • To L., Thompson B., Blum J.R., Maehara G., Hess R.F., Cooperstock J.R. A game platform for treatment of amblyopia // IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society. 2011. V. 19(3). P. 280–9.
  • Waddingham P., Eastgate R., Cobb S. Design and development of a virtual-reality based system for improving vision in children with amblyopia //Advanced Computational Intelligence Paradigms in Healthcare 6. Virtual Reality in Psychotherapy, Rehabilitation, and Assessment. Springer Berlin Heidelberg, 2011. V. 337. P. 229–252.
  • Wallman J., Wildsoet C., Xu A., Gottlieb M D., Nickla D.L., Marran L., Christensen A. M. Moving the retina: choroidal modulation of refractive state //Vision Res. 1995. Т. 35. No. 1. С. 37–50.
  • Wali N., Leguire L.E., Rogers G.L., Bremer D.L. CSF interocular interactions in childhood amblyopia // Optom. Vis. Sci. 1991. V. 68. P. 1–87.
  • Webber A.L. Amblyopia treatment: An evidence-based approach to maximising treatment outcome // Clinical and Experimental Optometry. 2007. V. 90(4). P. 250–257.
  • Webber A.L., Wood J. Amblyopia: Prevalence, natural history, functional effects and treatment // Clinical and Experimental Optometry. 2005. V. 88(6). P. 365–375.
  • Wildsoet C.F. Active emmetropization – evidence for its existence and ramifications for clinical practice // Ophthalmic and Physiological Optics. 1997. V. 17(4). P. 279–290.
  • Wildsoet C., Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks // Vision Res. 1995. V. 35(9). P. 1175–1194.