• 1987 (Vol.1)

Specifics of physiological and biochemical mechanisms of excitation and adaptation in retinal cones

© 2015 V. I.Govardovskii, L.A. Astakhova, M. L. Firsov

Institute for Evolutionary Physiology and Biochemistry, RAS 194223 Sankt-Petersburg, Thorez prospect, 44

Received 09 Jun 2015

We provide a review of recent data on features of the phototransduction in retinal cones and discuss the problem of the evolutionary origins of rods and cones. Functioning in the system of nocturnal (rod) or diurnal (cone) vision poses different challenges to the two types of photoreceptor cells. Rods are highly sensitive, react to light slowly and saturate (get blinded) at moderate diurnal illumination levels. Cones are 100 to 1000 times less sensitive than rods, but react an order of magnitude faster and do not saturate at brightest illuminations encountered in nature. Last years, a big body of biochemical and electrophysiological data was obtained on key features of the phototransduction cascade in cones that enable them to support diurnal vision. It is shown that the speed of the activation of the cascade (biochemical amplification) in cones is as high as in rods. However, all turn-off reactions proceed in cones an order of magnitude faster thus reducing cones’ sensitivity. This way, cones efficiently exchange sensitivity for the speed of the reaction. Cones’ ability to function at high light intensity is supported, besides their low sensitivity, by a high speed of regeneration of bleached cone visual pigments. The fast regeneration is made possible by the far faster decay of photoproducts of cone visual pigments compared to that in rods. It is generally accepted that cones represent evolutionary primary type of photoreceptor since vision obviously emerged in organisms living in good lighting conditions. Rods are considered to be a later specialization to vision at low light intensities. However, low sensitivity of the ancestral photoreceptor was the result of its primitiveness while in modern cones the low sensitivity is the result of optimization for very complex a function. It appears that the cone function relies on more refined biochemical machinery than in rods. The appearance of modern rods and cones is the result of the specialization of the ancestral photoreceptor cell in two directions: to achieve maximum sensitivity and to ensure perfect function at diurnal illuminances. The primary photoreceptor was neither cone nor rod, and the question of what type of the cell, rod or cone, is more ancient may be meaningless.

Key words: rods, cones, excitation, light adaptation, dark adaptation, evolution

Cite: Govardovskii V. I., Astakhova L. A., Firsov M. L. Spetsifika fiziologicheskikh i biokhimicheskikh mekhanizmov vozbuzhdeniya i adaptatsii kolbochek setchatki [Specifics of physiological and biochemical mechanisms of excitation and adaptation in retinal cones]. Sensornye sistemy [Sensory systems]. 2015. V. 29(4). P. 296-308 (in Russian).

References:

  • Фирсов М.Л., Говардовский В.И. Световая адаптация фоторецепторов: смысл и механизмы // Сенсорные системы. 2001. Т. 15. No 2. C. 101–113.
  • Ala-Laurila P., Kolesnikov A.V., Crouch R.K., Tsina E., Shukolyukov S.A., Govardovskii V.I., Koutalos Y., Wiggert B., Estevez M.E., Cornwall M.C. Visual cycle: dependence of retinol production and removal on photoproduct decay and cell morphology // J. Gen. Physiol. 2006. V. 128. P. 153–69.
  • Arshavsky V.Y., Burns M.E. Photoreceptor signaling: supporting vision across a wide range of light intensities // J. Biol. Chem. 2012. V.287. P. 1620– 1626.
  • Arshavsky V.Y., Burns M.E. Current understanding of signal amplification in phototransduction // Cell Logist. 2014. V. 4. e28680.
  • Astakhova L., Firsov M.L., Govardovskii V.I. Kinetics of turn-offs of frog rod phototransduction cascade // J. Gen. Physiol. 2008. V. 132 (5). P. 587–604.
  • Astakhova L., Firsov M., Govardovskii V. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling // Molecular Vision. 2015. V. 21. P. 244–263.
  • Burkhardt D.A. Light Adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle // J. Neurosci. 1994. V. 74 (3). 1091– 1105.
  • Burns M.E., Arshavsky V.Y. Beyond counting photons: trials and trends in vertebrate visual transduction // Neuron. 2005. V. 48. P. 387–401.
  • Chen C.-K., Woodruff M.L., Chen F.S., Shim H., Cilluffo M.C., Fain G.L. Replacing the rod with the cone transducin α subunit decreases sensitivity and accelerates response decay // J. Physiol. 2010. V. 588 (17). P. 3231–3241.
  • Cowan C.W., Fariss R.N., Sokal I., Palczewski K., Wensel T.G. High expression levels in cones of RGS9, the predominant GTPase accelerating protein of rods // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 5351– 5356.
  • Deng W.T., Sakurai K., Liu J., Dinculescu A., Li J., Pang J., Min S.H., Chiodo V.A., Boye S.L., Chang B., Kefalov V.J., Hauswirth W.W. Functional interchangeability of rod and cone transducin alpha-subunits // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 17681–17686.
  • Estevez M.E., Kolesnikov A.V., Ala-Laurila P., Crouch R.K., Govardovskii V.I., Cornwall M.C. The 9-methyl group of retinal is essential for rapid Meta II decay and phototransduction quenching in red cones // J. Gen. Physiol. 2009. V. 134 (2). P. 137–150.
  • Firsov M.L., Kolesnikov A.V., Golobokova E.Yu., Govardovskii V.I. Two realms of dark adaptation // Vision Research. 2005. V. 45. P. 147–151.
  • Firsov M.L., Golobokova E.Yu., Govardovskii V.I. Twostage quenching of cone phototransduction cascade // Сенсорные Системы. 2007. Т. 21 (1). С. 55–59.
  • Gillespie P.G., Beavo J.A. Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography // J. Biol. Chem. 1988. V. 263. P. 8133–8141.
  • Golobokova E.Yu., Govardovskii V.I. Late stages of visual pigment photolysis in situ: Cones vs. rods // Vision Research. 2006. V. 46. P. 2287–2297.
  • Govardovskii V.I., Calvert, P.D., Arshavsky V.Y. Photoreceptor light adaptation: untangling desensitization and sensitization // J. Gen. Physiol. 2000. V. 116. P. 791– 794.
  • Hecht S., Haig C., Chase A.M. The influence of light adaptation on subsequent dark adaptation of the eye // J. Gen. Physiol. 1937. V. 20. P. 831–850.
  • Hisatomi O., Tokunaga F. Molecular evolution of proteins involved in vertebrate phototransduction // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002. V. 133(4). P. 509–522.
  • Huang D., Hinds T.R., Martinez S.E., Doneanu C., Beavo J.A. Molecular determinants of cGMP binding to chicken cone photoreceptor phosphodiesterase // J. Biol. Chem. 2004. V. 279. P. 48143–48151.
  • Imai H., Kojima D., Oura T., Tachibanaki S., Terakita A., Shichida Y. Single amino acid residue as a functional determinant of rod and cone visual pigments // Proc. Natl. Acad. Sci. USA. 1997. V. 94. P. 2322–2326.
  • Imamoto Y., Shichida Y. Cone visual pigments // Biochim. Biophys. Acta. 2014. V. 1837 (5). P. 664–673.
  • Kawakami N., Kawamura S. Difference in the gain in the phototransduction cascade between rods and cones in carp // J. Neurosci. 2014. V. 34. P. 14682–14686.
  • Kawamura S., Tachibanaki S. Rod and cone photoreceptors: molecular basis of the difference in their physiology // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008. V. 150. P. 369–377.
  • Kojima K., Imamoto Y., Maeda R., Yamashita T., Shichida Y. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments // J. Biol. Chem. 2014. V. 289. P. 5061–5073.
  • Kolesnikov A.V., Golobokova E.Yu., Govardovskii V.I. The identity of metarhodopsin III // Visual Neuroscience. 2003. V. 20. P. 249–265.
  • Korenbrot J.I. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models // Prog. Retin. Eye. Res. 2012. V. 31 (5). P. 442–466.
  • Korenbrot J.I., Mehta M., Tserentsoodol N., Postlethwait J.H., Rebrik T.I. EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors // J. Neurosci. 2013. V. 33 (45). P. 17763–17776.
  • Koshitani Y., Tachibanaki S., Kawamura S. Quantitative aspects of cGMP phosphodiesterase activation in carp rods and cones // J. Biol. Chem. 2014. V. 289. P. 2651– 2657.
  • Kuwayama S., Imai H., Hirano T., Terakita A., Shichida Y. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins // Biochemistry. 2002. V. 41. P. 15245–15252.
  • Kuwayama S., Imai H., Morizumi T., Shichida Y. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments // Biochemistry. 2005. V. 44 (6). P. 2208–2215.
  • Lamb T.D., Pugh E.N., Jr. Phototransduction, dark adaptation, and rhodopsin regeneration. The Proctor lecture // Invest. Ophthalmol. Vis. Sci. 2006. V. 47. P. 5137– 5152.
  • Leskov I.B., Klenchin V.A., Handy J.W., Whitlock G.G., Govardovskii V.I., Bownds M.D., Lamb T.D., Pugh E.N., Jr., Arshavsky V.Y. The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements // Neuron. 2000. V. 27. P. 525– 537.
  • Mao W., Miyagishima K.J., Yao Y., Soreghan B., Sampath A.P., Chen J. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity // J. Biol. Chem. 2013. V. 288. P. 5257–5267.
  • Muradov H., Boyd K.K., Haeri M., Kerov V., Knox B.E., Artemyev N.O. Characterization of human cone phosphodiesterase-6 ectopically expressed in Xenopus laevis rods // J. Biol. Chem. 2009. V. 284. P. 32662–32669.
  • Muradov H., Boyd K.K., Artemyev N.O. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent // J. Biol. Chem. 2010. V. 285. P. 39828–39834.
  • Nikonov S., Lamb T.D., Pugh E.N., Jr. The role of steady phosphodiesterase activity in the kinetics and sensitivity of the light-adapted salamander rod photoresponse // J. Gen. Physiol. 2000. V. 116. P. 795–824.
  • Palczewski K. Chemistry and biology of vision // J. Biol. Chem. 2012. V. 287. P. 1612–1629.
  • Pugh E.N., Jr., Lamb T.D. Amplification and kinetics of the activation steps in phototransduction // Biochim. Biophys. Acta. 1993. V. 1141. P. 111–149.
  • Pugh E.N., Jr., Lamb T.D. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation // Handbook of Biological Physics / Eds. Stavenga D.G., Pugh E.N. Jr., de Grip W.J. New York: Elsevier Science, 2000. P. 183– 255.
  • Rodieck R.W. The first steps in seeing. Sunderland, MA: Sinauer Associates, 1998. 562 p.
  • Sakurai K., Onishi A., Imai H., Chisaka O., Ueda Y., Usukura J., Nakatani K., Shichida Y. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice // J. Gen. Physiol. 2007. V. 130. P. 21–40.
  • Shi G., Yau K.W., Chen J., Kefalov V.J. Signaling properties of a short-wave cone visual pigment and its role in phototransduction // J. Neurosci. 2007. V. 27. P. 10084–10093.
  • Shichida Y., Matsuyama T. Evolution of opsins and phototransduction // Phil. Trans. R. Soc. B. 2009. V. 364. P. 2881–2895.
  • Tachibanaki S., Tsushima S., Kawamura S. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 14044–14049.
  • Tachibanaki S., Arinobu D., Shimauchi-Matsukawa Y., Tsushima S., Kawamura S. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of lightactivated visual pigment in cones // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 9329–9334.
  • Tachibanaki S., Yonetsu S., Fukaya S., Koshitani Y., Kawamura S. Low activation and fast inactivation of transducin in carp cones // J. Biol. Chem. 2012. V. 287. P. 41186–41194.
  • Takemoto N., Tachibanaki S., Kawamura S. High cGMP synthetic activity in carp cones // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 11788–11793.
  • Vissers P.M., Bovee-Geurts P.H., Portier M.D., Klaassen C.H., DeGrip W.J. Large-scale production and purification of the human green cone pigment: characterization of late photo-intermediates // Biochem. J. 1998. V. 330 (Pt 3). P. 1201–1208.
  • Wada Y., Sugiyama J., Okano T., Fukada Y. GRK1 and GRK7: unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones // J Neurochem. 2006. V. 98. P. 824– 837.
  • Walls G.L. The vertebrate eye and its adaptive radiation. Bloomfield Hills, Mich: Cranbrook Institute of Science, 1942. 785 p.
  • Wang J.-S., Kefalov V.J. 2011. The cone-specific visual cycle // Prog. Retin. Eye. Res. 2011. V. 30 (2). P. 115– 128.
  • Yau K.W., Hardie R.C. Phototransduction motifs and variations // Cell. 2009. V. 139. P. 246–264.
  • Zhang X., Wensel T.G., Kraft T.W. GTPase regulators and photoresponses in cones of the eastern chipmunk // J. Neurosci. 2003. V. 23. P. 1287–1297.