• 1987 (Vol.1)

Interhemispheric asymmetry of the evoked responses to moving sound stimuli in humans

© 2015 S. Ph. Vaitulevich, E. A. Petropavlovskaia, L. B. Shestopalova, N. I. Nikitin

Pavlov Institute of Physiology, RAS 199034, Saint-Petersburg, Makarova emb., 6

Received 03 Oct 2014

The EEG was recorded while the sound stimuli were binaurally presented in a passive oddball paradigm. The standard stimuli were the low pass noise bursts localized near the head midline. The deviants were the same noises moving from the head midline within the frontal acoustic space either gradually or abruptly. The two patterns of sound motion were simulated manipulating the interaural time differences. The asymmetry ratios were estimated for the N1P2 components of the ERPs and for the MMN amplitude. The ERPs to standards and deviants clearly demonstrated right hemisphere dominance at frontal and central recording sites. The rightward bias was greater at lateral recordings and depended on the direction of the sound motion. The MMN asymmetry was less evident and tended towards contralateral dominance. The only factor of significance for the MMN asymmetry was the angular distance between standard and deviant stimuli. The present study suggests different hemispheric predominance for the ERPs and MMNs elicited by the moving sounds. These finding are consistent with previous reports of MMN contralaterality and of asymmetric involvement of the right hemisphere in the ERP generation.

Key words: spatial hearing, auditory evoked potentials, mismatch negativity (MMN), interhemispheric asymmetry

Cite: Vaitulevich S. Ph., Petropavlovskaia E. A., Shestopalova L. B., Nikitin N. I. Mezhpolusharnaya asimmetriya summarnoi aktivnosti mozga cheloveka pri lokalizatsii istochnika zvuka [Interhemispheric asymmetry of the evoked responses to moving sound stimuli in humans]. Sensornye sistemy [Sensory systems]. 2015. V. 29(2). P. 148-162 (in Russian).


  • Альтман Я.А., Вайтулевич С.Ф. Слуховые вызванные потенциалы человека и локализация источника звука. СПб.: Наука, 1992. 136 с.
  • Altman J.A., Vaitulevich S.F., Shestopalova L.B., Petropavlovskaja E.A. How does mismatch negativity reflect auditory motion? // Hearing Research. 2010. V. 268. P. 194–201.
  • Bennemann J., Freigang C., Schröger E., Rübsamen R., Richter N. Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics // Front. Psychol. 2013. doi: 103389 / frsyg. 2013.00338.
  • Brunetti M., Belardinelli P., Caulo M. Human brain activation during passive listening to sounds from different locations: An fMRI and MEG // Human Brain Mapping, 2005. V. 26 (4). P. 251–261.
  • Debener S., Strobel A., Sorger B. Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefakt // Neuroimage. 2007. V. 34(2). P. 587–597.
  • Deouell L., Bentin S., Giard M.-H. Mismatch negativity in dichotic: Evidence for interhemispheric differences and multiple generators // Psychophysiol. 1998. V. 35. P. 355–365.
  • Deouell L.Y., Bentin S., Soroker N. Electrophysiological evidence for an early (pre-attentive) information processing deficit in patients with right hemisphere damage and unilateral neglect // Brain. 2000. V. 123 (Pt 2). P. 353–365.
  • Deouell L., Parnes A., Pickard N., Knight R. Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity // Eur. J. Neurosci. 2006. V. 24. P. 1488–1494.
  • GetzmannS. Effects of auditory motion velocity on reaction time and cortical process // Neuropsychologia. 2009. V. 47. P. 2625–2633.
  • Gerzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages // Eur. J. Neurosci. 2011. V. 33. P. 1339–1350.
  • Griffiths T.D., Rees G., Rees A., Green G., Witton C., Rowe D., Buchel C., Turner R., Frackowiak R.S. Right parietal cortex is involved in the perception of sound movement in humans // Nat. Neurosci. 1998. V. 1. P. 74–79.
  • Hine J., Debener S. Late auditory evoked potentials asymmetry revisited // Clinical Neurophysiol. 2007. V. 118. P. 1274–1285.
  • Hirnstein M., Hausmann M., Lewald J. Functional cerebral asymmetry in auditory motion perception // Laterality. 2006. V. 12. P. 87–99.
  • Itoh K.,Yumoto M., Uno A. Temporal stream of cortical representation for auditory spatial localization in human hemispheres // Neurosci. Lett. 2000. V. 292. P. 215–219.
  • Johnson B., Hautus M. Processing of binaural information in human auditory cortex: Neuromagnetic responses to interaural timing and level differences // Neuropsychologia, 2010. V. 48. P. 2610–2619.
  • Kaiser J., Lutzenberger W., Preissl H., Ackermann H., Birbaumer N. Right-hemisphere dominance for the processing of sound source lateralization // J. Neurosci. 2000. V. 20. P. 6631–6639.
  • Kaiser J., Lutzenberger W. Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sound in humans // Neurosci. Lett. 2001. V. 314. P. 17–20.
  • Khosla D., Ponton C.W., Eggermout J.J. Differential ear effects of profound unilateral deafness on the adult human central auditory system // J. Assoc. Res. Otolaryngol. (JARO). 2003. V. 4. P. 235–249.
  • Kreitewolf J., Lewald J., Gerzmann S. Effect of attention on cortical processing of sound motion: An EEG study // Neuroimage. 2011. V. 54. P. 2340–2349.
  • Krumbholz K., Schönwiesner M., von Cramon D.Y. Representation of interaural temporal information from left and right space in the human planum temporale and inferior parietal lobe // Cereb. Cortex. 2005. V. 15. P. 317–324.
  • Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649–1655.
  • Lewald J., Riederer K., Lentz T., Meister I.G. Processing of sound localization in human cortex // Eur. J. Neurosci. 2008. V. 27. P. 1261–1270.
  • Maess B., Jacobsen T., Schröger E., Friederici A.D. Localizing pre-attentive auditory memory-based comparison: Magnetic mismatch negativity to pitch change // Neuroimage. 2007. V. 37. P. 561–571.
  • Mulert C., Janger L., Propp Sl. Sound level dependence of the primary auditory cortex: simultaneous measurement with 61-channel EEG and fMRI // Neuroimage. 2005. V. 28. P. 49–58.
  • Nager W., Kohlmetz C., Joppich G. Tracking of multiple sound sources defined by interaural time differences brain potential evidence in human // Neurosci. Lett. 2003. V. 344. P. 181–184.
  • Näätänen R., Picton T. The N1 wave of human electric and magnetic response to sound: A review and an analysis of the component structure // Psychophysiol. 1987. V. 24. P. 375–425.
  • Näätänen R., Kujala T., Winkler I. Auditory processing that leads to conscious perception: A unigue window to central auditory processing opened by the mismatch negativity and related responses // Psychophysiol. 2011. V. 48. P. 4–22.
  • Opitz B., Schröger E., von Cramon D.Y. Sensory and cognitive mechanisms for preattentive change detection in auditory cortex // Europ. J. Neurosci. 2005. V. 21. P. 531–535.
  • Palomäki R., Alku P., Mäkinen V., May P., Tiitinen H. Sound localization in the human brain: neuromagnetic observation // Neuroreport. 2000. V. 11. P. 1535–1538.
  • Picton T.W., Alain C., Woods D. Intracerebral sources of human auditory evoked potentials // Audiol. Neurootol. 1999. V. 4 (2). P. 64–79.
  • Richter N., Schröger E., Rübsamen R. Hemisperic specialization during discrimination of sound sources reflected by MMN // Neuropsychol. 2009. V. 47. P. 2652– 2659.
  • Schröger E. On the detection of auditory deviants: A preattentive activation model // Psychophysiol. 1997. V. 34. P. 245–257.
  • Scherg M., von Cramon D. Evoked dipole source potentials of the human auditory cortex // Electroencephalogr. Clin. Neurophysiol. 1986. V. 65. P. 344–360.
  • Schonwiesner M., Rubsamen R., von Cramon S.Y. Spectral and temporal processing in the human auditory cortexrevisited // Ann. N.Y. Acad.Sci. 2005. V. 1060. P. 89–92.
  • Shaw M.E., Hämäläinen M., Gutschalk A. How anatomic asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields // Neuroimage. 2013. V. 74. P. 22–29.
  • Sonnadara R.R., Alain C., Trainor I. Effects of spatial separation and stimulus probability on event-related potentials elicited by occasional changes in sound location // Brain Res. 2006. V. 1071 (11). P. 175–185.
  • Tata M.S., Ward I.M. Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway // Exp. Brain Res. 2005. V. 167. P. 481–486.
  • Tervaniemi M., Hugdahl K. Lateralization of auditorycortex function // Brain Res. Rev., 2003. V. 43. P. 231– 246.
  • Xiang J., Chuang S., Wilson D., Otsubo H., Pang E., Holowka S., Sharma R., Ochi A., Chitoku S. Sound motion evoked magnetic fields // Clin. Neurophysiol. 2002. V. 113. P. 1–9.
  • Yvert B., Fischer C., Bertrand O., Pernier J. Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models // Neuroimage. 2005. V. 28. P. 140–153.
  • Zatorre R.J., Penhune V.B. Spatial localization after excision of human auditory cortex // J. Neurosci. 2001. V. 21(16). P. 6321–6328.