ЧАСТОТНАЯ ИЗБИРАТЕЛЬНОСТЬ СЛУХА

© 2015 г. Д. И. Нечаев, Е. В. Сысуева

Институт проблем экологии и эволюции им А.Н.Северцова РАН 119071 Москва, Ленинский проспект, 33
dm.nechaev@yandex.ru

Поступила в редакцию 29.04.2015 г.

Представлен обзор данных по частотной избирательности слуховой системы. В обзор включены преимущественно данные психоакустических экспериментов и построенные на их основе модели, как классическими методами маскировки, так и с использованием немаскировочных методов и сложных сигналов.

Ключевые слова: слух, психоакустика, частотная избирательность

Цитирование для раздела "Список литературы": Нечаев Д. И., Сысуева Е. В. Частотная избирательность слуха. Сенсорные системы. 2015. Т. 29. № 3. С. 181-200.
Цитирование для раздела "References": Nechaev D. I., Sysueva E. V. Chastotnaya izbiratelnost slukha [Frequency selectivity of hearing]. Sensornye sistemy [Sensory systems]. 2015. V. 29(3). P. 181-200 (in Russian).

Список литературы:

  • Попов В.В., Супин А.Я. Количественное измерение частотной разрешающей способности слуха человека // Докл. акад. наук. 1984. Т. 278. С. 1012–1016.
  • Супин А.Я., Попов В.В., Милехина О.Н., Тараканов М.Б. Чувствительность слуха к контрасту спектрального рисунка звука // Докл. акад. наук. 1999. Т. 365. С. 571–573.
  • Супин А.Я., Попов В.В., Милехина О.Н., Тараканов М.Б. Влияние интенсивности звука на частотную разрешающую способность слуха и эффект помех // Доклады РАН. 2002. Т. 383. No 2. С. 134– 137.
  • Супин А.Я. Острота (частотная разрешающая способность слуха) человека // Сенсорные системы. 2003. Т. 17. No 4. С. 288–306.
  • Супин А.Я., Попов В.В. Частотная разрешающая способность слуха: некоторые фундаментальные представления как основа практических решений // Физиология человека. 1987. Т. 13. С. 28–34.
  • Темчин А.Н., Ресио-Спинозо А., Кай Х., Ружжеро М.А. Бегущие волны в органе корти улитки шиншиллы // Сенсорные системы. 2012. Т. 26. No 4. С. 304–325.
  • Anderson E.S., Nelson D.A., Kreft H., Nelson P.B., OxenhamA.J. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users // J. Acoust. Soc. Am. 2011. V. 130. P. 364–375.
  • Aronoff J.M., Landsberger D.M. The development of a modified spectral ripple test // J. Acoust. Soc. Am. 2013. V. 134. P. 217–222.
  • Bekesy G. Experiments In Hearing. New York: McgrawHill, 1960.
  • Berenstain C.K., Mens L.H., Mulder J.J.S., Vanpoucke F.J. Current steering and current focusing in cochlear implants: Comparison of monopolar, tripolar, and virtual channel electrode configuration // Ear. Hear. 2008. V. 29. P. 250–260.
  • Cai Y., Geisler D. Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results // Hearing Research. 1996. V. 96. P. 126–140.
  • Cooper N.P., Rhode W.S. Nonlinear mechanics at the apex or the guineapig cochlea // Hear: Res. 1995. V. 82. P. 225–243.
  • Dai H., Nguyen Q.T., Green D.M. A two-filter model for frequency discrimination // Hearing Research. 1995. V. 85. P. 109–114.
  • Dallos P., Zheng J., Cheatham M.A. Preastin and cohlear amplifier // J. Physiology. 2006. V. 576. P. 37–42.
  • Dau T., Kollmeier B., Kohlrausch A. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrowband carriers // J. Acoust. Soc. Am.1997. V. 102. P. 2892–2905.
  • Drennan W.R., Won J.H., Nie K., Jameyson E., Rubinstein J.T. Sensitivity of psychophysical measures to signal processor modification in cochlear implant users // Hear. Res. 2010. V. 262. P. 1–8.
  • Emmerich D.S., Ellermeier W., Butensky B. A re-examination of the frequency discrimination of random-amplitude tones, and a test of Henning’s modified energy-detector model // J. Acoust. Soc. Am. 1989. V. 85. P. 1653–1659.
  • Evans E.F. Auditory processing of complex sounds: an overview // Phil. Trans. R. Soc. Lond. 1992. V. B 336. P. 295–306.
  • Fastl H., Zwicker E. Psychoacoustics Facts and Models. New York: Springer, 2007.
  • FletcherH. Auditory patterns // Reviews of Modern Physic, 1940. V. 12. P. 47–65.
  • Geisler C.D., Nuttall A.L. Two-tone suppression of basilar membrane vibrations in the base of guinea pig cochlea using low-side suppressors // J. Acoust. Soc. Am. 1997. V. 102. P. 430–440.
  • Glasberg B.R., Moore B.C.J. Derivation of auditory filter shapes from notched-noise data // Hear. Res. 1990. V. 47. P. 103–138.
  • Glasberg B.R., Moore B.C.J. Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise // J. Acoust. Soc. Am. 2000. V. 108. P. 2318–2328.
  • Green D. Profile Analysis: A different view of auditory intensity discrimination // Am. Psychol. 1983. V. 38. P. 133–142.
  • Green D.M. On number of components in profile-analysis tasks // J. Acoust. Soc. Amer. 1992. V. 91. P. 1616 – 1623.
  • Green D.M., Onsan Z.A., Forrest T.G. Frequency effects in profile analysis // J. Acoust. Soc. Amer. 1987. V. 81. P. 692–699.
  • Henning G.B. Frequency discrimination of random amplitude tones // J. Acoust. Soc. Am. 1966. V. 39. P. 336– 339.
  • Henry B.A., Turner C.W. Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners // J. Acoust. Soc. Am. 2005. V. 118. P. 1111–1121.
  • Henry B.A., Turner C.W. The resolution of complex spectral patterns by cochlear implant and normal – hearing listeners // J. Acoust. Soc. Am. 2003. V. 113. P. 2861–2873.
  • Houtgast T. Auditory-filter characteristics derived from direct-masking and pulsation-threshold data with a rippled-noise masker // J. Acoust. Soc. Am. 1977. V. 62. P. 409–415.
  • Irino T., Patterson R.D. A time-domain, level-dependent auditory filter: the gammachirp // J. Acoust. Soc. Am. 1997. V. 101. P. 412–419.
  • Kiang N.Y.S., Watanabe T., Thomas E.C., Clark L.F. Discharge Patterns of Single Fibers in the Cats Auditory Nerve. Cambridge. MA: MIT Press, 1965.
  • Krumbholtz K., Patterson R.D., Nobble A. Asymmetry of masking between noise and iterated rippled noise: Evidence for time-interval processing in the auditory system // J. Acoust. Soc. Am. 2001. V. 110. P. 2096– 2107.
  • Lopez-Poveda E.A., Meddis R. A human nonlinear cochlear filter bank // J. Acoust. Soc. Am. 2001. V. 110. P. 3107–3118.
  • Martin P., Mehta A.D., Hudspeth A.J. Negative hairbundle stiffness betrays a mechanism for mechanical amplification by the hair cell // Proc. Nat. Acad. Science USA. 2000. V. 97. P. 12026–12031.
  • McKay C., Azadpour M., Akhoun I. In search of frequency resolution // Conference on Implantable Auditory Prostheses. July 2009. Lake Tahoe, CA.
  • Micheyl C., Xiao L., Oxenham A.J. Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level // Hearing Research. 2012. V. 292. P. 1–13.
  • Moore B.C.J. An introduction to the psychology of hearing. Leiden, Boston. Brill, 2013.
  • Moore B.C.J. Frequency difference limens for short-duration tones // J. Acoust. Soc. Am. 1973. V. 54. P. 610– 619.
  • Moore B.C.J. Psychophysical tuning curves measured in simultaneous and forward masking // J. Acoust. Soc. Am. 1978. V. 63. P. 524–532.
  • Moore B.C.J., Alcantara J.I., Dau T. Masking patterns for sinusoidal and narrowband noise maskers // J. Acoust. Soc. Am. 1998. V. 104. P. 1023–1038.
  • Moore B.C.J., Ernst S.M.A. Frequency difference limens at high frequencies: Evidence for a transition from a temporal to a place code // J. Acoust. Soc. Am. 2012. V. 132. P. 1542–1547.
  • Moore B.C.J., Glasberg B.R Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation // J. Acoust. Soc. Am. 1989. V. 86. P. 1722–1732.
  • Moore B.C.J., Glasberg B.R, The danger of using narrowband noise maskers to measure suppression // J. Acoust. Soc. Am. 1985. V. 77. P. 2137–2141.
  • Moore B.C.J., Glasberg B.R. Suggested formulae for calculating auditory filter band widths and excitation patterns // J. Acoust. Soc. Am. 1983. V. 74. P. 750– 753.
  • Neff D.L. Stimulus parameters governing confusion effects in forward masking // J. Acoust. Soc. Am. 1985. V. 78. P. 1966–1976.
  • Nelson D.A., Sianton M.E., Freyman R.L. A general equation describing frequency d3.iscrimination as a function of frequency and sensation level // J. Acoust. Soc. Am. 1983. V. 73. P. 2117–2123.
  • Oxenham A.J., Plack C.J. Suppression and the upward spread of masking // J. Acoust. Soc. Am. 1998. V. 101. P. 1921–1934.
  • Oxenham A.J., Shera C.A. Estimates of human cochlear tuning at low levels using forward and simultaneous masking // J. Assoc. Res. Otolaryngol. 2003. V. 4. P. 541–554.
  • Patterson R.D. Auditory filter shapes derived with noise stimuli // J. Acoust. Soc. Am. 1976. V. 59. P. 640–654.
  • Patterson R.D., Allerhand M.H., Giguere C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform // J. Acoust. Soc. Am. 1995. V. 98. P. 1890–1894.
  • Patterson R.D., Moore B.C. Auditory filters and excitation patterns as representations of frequency resolution // Frequency selectivity in hearing / Ed. Moore B.C.J. London: Acad Press., 1986. P. 123–177.
  • Patterson R.D., Nimmo-Smith I. Off-frequency listening and auditory filter asymmetry // J. Acoust. Soc. Am. 1980. V. 67. P. 229–245.
  • Patterson R.D., Nimmo-Smith I., Weber D.L., Milory R. The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold // J. Acoust. Soc. Am. 1982. V. 72. P. 1788– 1803.
  • Pick G. Level dependence of psychophysical frequency resolution and auditory filter shape // J. Acoust. Soc. Am. 1980. V. 68. P. 1085–1095.
  • Rhode W.S., Greenberg S. Lateral suppression and inhibition in the cochlear nucleus of the cat // J. Neurophysiol. 1994. V. 71. P. 493–514.
  • Rhode W.S. Observations or the vibration or the basilar membrane in squirrel monkeys using the M6ssbauer technique // J. Acoust. Soc. Am. 1971. V. 49. P. 1218– 1231.
  • Rhode W.S., Recio A. Study of mechanical motions in the basal region of the chinchilla cochlea // J. Acoust. Soc. Am. 2000. V.107. P. 3317–3332.
  • Robles L., Ruggero M.A. Mechanics of the mammalian cochlea // Physiol. Rev. 2001. V. 81. P. 1305–1352.
  • Rose J.E., Brugge J.F., Anderson D.J., Hind J.E. Patterns of activity in single auditory nerve fibers of the squirrel monkey // Hearing Mechanisms in Vertebrates / Eds. A.V. Sd, Reuck, J. Knight. London: Churchill, 1968.
  • Ruggero M.A., Rich N.C., Recio A., Narayan S.S., Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea // J. Acoust. Soc. Am. 1997. V. 101. P. 2151–2163.
  • Ruggero M.A., Robles L., Rich N.C. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression // J. Neuraphysiol. 1992. V. 68. P. 1087–1099.
  • Sachs M.B., Kiang N.Y.S. Two-tone inhibition in auditory nerve fibers // J. Acoust. Soc. Am. 1968. V. 43. P. 1120– 1128.
  • Scharf B. Critical bands // Foundations of Modem Auditory Theory / Ed. J.V. Tobias. New York: Academic Press, 1970.
  • Sek A., Moore B.C. Frequency discrimination as a function of frequency, measured in several ways // J. Acoust. Soc. Amer. 1995. V. 87. P. 2479–2486.
  • Shamman S.A., Kowalski N., Versnel H. Ripple analysis in the ferret primary auditory cortex. Topographic distribution of ripple response parameters // J. Auditory Neurosci. 1995. V. 1. P. 271–278.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency-temporal resolution of hearing measured by rippled noise // Hearing Res. 1997. V. 108. P. 17–27.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Ripple density resolution for various rippled-noise patterns // J. Acoust. Soc. Am. 1998. V. 103. P. 2042– 2050.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency resolving power measured by rippled noise // Hearing Res. 1994. V. 78. P. 31–40.
  • Unoki M., Irino T., Glasberg B.R., Moore B.C.J., Patterson R.D. Comparison of the roex and gamrnachirp filters as representations of the auditory filter // J. Acoust. Soc. Am. 2006. V. 120. P. 1474–1492.
  • Vogten L.L.M. Pure-tone masking: A new result from a new method // Facts and models in hearing / Eds Zwicker E., Terhardt E. Berlin: Springer-Verlag, 1974. P. 142–155.
  • Wier C.C., Jesteadt W., Green D.M. Frequency discrimination as a function of frequency and sensation level // J. Acoust. Soc. Am. 1977. V. 61. P. 178–184.
  • Won J.H., Drennan W.R., Rubinatein J.T. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users // J. Assoc. Res. Otolaryngol. 2007. V. 8. P. 384–392.
  • Won J.H., Humphrey E.L., Yeager K.R., Martinez A.A., Robinson C.H., Mills K.E., Johnstone P.M. Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users // J. Acoust. Soc. Am. 2014. V. 136. P. 2714–2725.
  • Yasin I., Plack C.J. The effects of high-frequency suppressor on tuning corves and derived basilar-membrane response functions // J. Acoust. Soc. Am. 2003. V. 114. P. 322–332.
  • Yost W.A. Pitch of iterated rippled noise // J. Acoust. Soc. Amer. 1996. V. 100. P. 511–518.
  • Yost W.A. The dominance region and ripple-noise pitch: A test of the peripheral weighting model // J. Acoust. Soc. Am. 1982. V. 72. P. 416–425.
  • Zhang X., Heinz M.G., Bruce I.C., Carneyl H. A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. // J. Acoust. Soc. Am. 2001. V. 109. P. 648– 670.
  • Zinn C., Maier H., Zenner H.H., Gummer A.W. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in Vivo Guinea-Pig Cochlea // Hear. Res. 2000. V. 142. P. 159–183.
  • Zwicker E. Masking and psuchological exitation as consequences of the ear`s frequency analysis // Frequency Analysis and periodicity detection in hearing / Eds. Plomp R., Smoorenburg G.F., Sijthoff, leiden. 1970. P. 376–396.
  • Zwicker E. Subdivision of the audible frequency range into critical bands (Frequenz gruppen) // J. Acoust. Soc. Am. 1961. V. 33. P. 248.