The algorithm for simulation of dichromatic vision and its application for detecting color vision deficiencies

© 2019 P. V. Maximov, E. M. Maximova, M. A. Gracheva, A. A. Kazakova, A. S. Kulagin

Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, B. Karetny per. 19, Build. 1, Russia
Pirogov Russian National Research Medical University, 117997 Moscow, Ostrovitianov str. 1, Russia
Moscow State Budgetary Educational Institution “School № 1501”, 127055 Moscow, Tikhvinsky per., 3, Russia

Received 20 Feb 2019

A normal human color vision is based on three types of cones in the retina: with long-wave (L), middle-wave (M) and short-wave (S) photopigments. The main pathologies of color vision – dichromacy and anomalous trichromacy – are caused by the malfunction of one of the cone types. There are three types of dichromacy: protanopia – the absence of a long- wave photopigment, deuteranopia – the absence of a middle-wave photopigment, and very rare tritanopia – the absence of a short-wave photopigment, while anomalous trichromacy is caused by the shift of the spectral sensitivity curve of one of the cone types from its normal position along the axis of wavelengths. We developed a software simulator of dichromatic color vision allowing an observer with normal color perception to assess which colors are distinguishable in the image, and which colors are indistinguishable for protanopes and deuteranopes. The simulator performs direct and inverse transformations between monitor pixel values (R, G, B) and calculated relative cone excitations (L, M, S). To simulate protanopic perception, an output image is constructed so that each pixel would induce the same excitations of M and S cones as the same pixel of the original image does, and the excitation of L cone would be adjusted arbitrary. Simulation of deuteranopic perception is similar, but the values of L and S cone excitations are preserved, and the value of M cone excitation is adjusted arbitrarily. In other words, the simulator reduces the dimensionality of the LMS color space from 3 to 2 according to the simulated type of dichromacy. On the basis of this simulator we developed another software for human color vision testing. The subject is being sequentially presented with triples of images: a “trichromatic” one, and two images simulating color perception of protanopes and deuteranopes. The task for the subject is to select the image standing out color-wise. Normal trichromates select the “trichromatic” picture as the most different one, protanopes select “deuteranopic” image, and deuteranopes select “protanopic” image. The data of preliminary examining (83 subjects) demonstrated the usefulness of our color vision testing software.

Key words: human color vision, dichromacy, detection of color vision deficiencies, dichromacy modeling, color coordinates conversion

DOI: 10.1134/S0235009219030053

Cite: Maximov P. V., Maximova E. M., Gracheva M. A., Kazakova A. A., Kulagin A. S.. Algoritm imitatsii zreniya dikhromatov i ego primenenie dlya vyyavleniya anomalii tsvetovospriyatiya [The algorithm for simulation of dichromatic vision and its application for detecting color vision deficiencies]. Sensornye sistemy [Sensory systems]. 2019. V. 33(3). P. 181-196 (in Russian). doi: 10.1134/S0235009219030053


  • Domasev M.V., Gnatyuk S. Tsvet, upravlenie tsvetom, tsvetovye raschety i izmereniya [Color, color management, color calculations and measurements]. SPb.: “Piter”, 2007. 224 p. (In Russian).
  • Kravkov S. Glaz i ego rabota [Eye and its performance]. M.: Medicina, 1932. 245 p. (In Russian).
  • Nyuberg N.D., Yustova E.N. Issledovanie tsvetnogo zreniya dikhromatov [A study of dichromats color vision]. Trudy GOI. 1955. V. 24 (143). P. 33-93. (In Russian).
  • Yustova E.N. Tsvetovye izmereniya (Kolorimetriya) [Measurements of color (Colorimetry)]. SPb.: Izdatel’stvo S.-Peterburgskogo universiteta. 2000. 397 p. (In Russian).
  • Alpern M., Kitahara K., Krantz D.H. Perception of colour in unilateral tritanopia. J. Physiol. (London). 1983. V.335. P. 683–697.
  • Baraas R.C., Carroll J., Gunther K.L., Chung M., Williams D.R., Foster D.H., Neitz M. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. J Opt Soc Am A Opt Image Sci Vis. 2007. V.24 (5). P. 1438–1447.
  • Birch J. Worldwide prevalence of red-green color deficiency. J Opt Soc Am A. 2012. V. 29 (3). P. 313–320.
  • Bowmaker J.K., Astell S., Hunt D.M., Mollon J.D. Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol. 1991. V. 156. P. 1–19.
  • Brettel H., Viénot F., Mollon J.D. Computerized simulation of color appearance for dichromats. J. Opt. Soc. Am. A. 1997. V. 14 (10). P. 2647–2655.
  • Carroll J., Neitz M., Hofer H., Neitz J., Williams D.R. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. PNAS. 2004. V. 101m (22). P. 8461–8466.
  • Collin Sh.P., Davies W.L., Hart N.S., Hunt D.M. The evolution of early vertebrate photoreceptors. Phil. Trans. R. Soc. B. 2009. V. 364. P. 2925–2940. doi: 10.1098/rstb.2009.0099
  • Dalton J. Extraordinary facts relating to the vision of colours: with 19 observations. Memoirs of the Literary and Philosophical Society of Manchester. 1798. V. 5. P.28– 45.
  • Dulai K.S., Bowmaker J.K., Mollon J.D., Hunt D.M. Sequence divergence, polymorphism and evolution of middle-wave and long-wave visual pigment genes of great apes and Old World monkeys. Vision Res. 1994. V.34 (19). P. 2483–2491.
  • Dulai K.S., von Dornum M., Mollon J. D., Hunt D.M. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Res. 1999. V. 9 (7). P. 629–638.
  • Golz J., Macleod D. I. A. Colorimetry for CRT displays. J.Opt. Soc. Am. A. 2003. V. 20 (5). P. 769–781.
  • Hunt D.M., Carvalho L.S., Cowing J.A., Davies W.L. Evolution and spectral tuning of visual pigments in birds and mammals. Phil. Trans. R. Soc. B. 2009. V. 364. P.2941–2955.
  • Ibbotson R.E., Hunt D.M., Bowmaker J.K., Mollon J.D. Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc. R. Soc. Lond. B. 1992. V. 247 (1319). P.145–154.
  • Jacobs G.H. The evolution of vertebrate color vision. Sensing in Nature. Springer, New York, NY. 2012. P. 156–172.
  • Jacobs G.H. The distribution and nature of colour vision among the mammals. Biol. Rev. 1993. V. 68. P. 413–471.
  • Judd D.B. Color perceptions of deuteranopic and protanopic observers. J. Res. Natl. Bur. Stand. 1948. V. 41. P.247–271.
  • Lucas P.W., Darvell B.W., Lee P.K.D., Yuen T.D.B., Choong M.F. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol. 1998. V. 69. P. 139–154.
  • Lucassen M.P., Alferdinck J.W.A.M. Dynamic Simulation of Color Blindness for Studying Color Vision Requirements in Practice. Proc. CGIV. 2006. P. 355–358.
  • Mancuso K., Hauswirth W.W., Li Q., Connor T.B., Kuchenbecker J.A., Mauck M.C., Neitz J., Neitz M. Gene therapy for red–green colour blindness in adult primates. Nature. 2009. V. 461. P. 784–787.
  • Maximov P.V. The program simulating dichromacy as a possible tool for detecting colour deficiencies. Perception. V. 48. Suppl., Proc. ECVP. 2019. P. 46.
  • Mollon J.D., Estevez O., Cavonius C.R. The two subsystems of colour vision. Vision: Coding and efficiency. Cambridge University Press. 1993. P. 117–149.
  • Nathans J. The Evolution and Physiology of Human Color Vision: Insights from Molecular Genetic Studies of Visual Pigments. Neuron. 1999. V. 24. P. 299–312.
  • Nathans J., Thomas D., Hogness D.S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science. 1986. V. 232. P. 193–202.
  • Neitz J. Polymorphism in normal human color vision and its mechanism. Vision RCS. 1990. V. 30.(4). P. 621–636.
  • Peichl L., Behrmann G., Kröger R.H.H. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. European Journal of Neuroscience. 2001. V. 13. P. 1520–1528.
  • Ruddock K.H. Psychophysics of inherited colour vision deficiencies. Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies. EdsD.H. Foster. 1991. V. 7. P. 4–37.
  • Simunovic M.P. Colour vision deficiency. Eye. 2010. V. 24 (5). P. 747–755.
  • Schnapf J.L., Kraft T.W., Baylor D.A. Spectral sensitivity of human cone photoreceptors. Nature. 1987. V. 325. P.439–441.
  • Sharpe L.T., Stockman A., Jägle H., Nathans J. Opsin genes, cone photopigments, color vision, and color blindness. Color vision: From genes to perception. Cambridge Univ. Press, UK. 2000. P. 3–51.
  • Stockman A., MacLeod D.I.A., Johnson N.E. Spectral sensitivities of the human cones. J. Opt. Soc. Am. A. 1993. V. 10. P. 2491–2521.
  • Sumner P., Mollon J.D. Сatarrhine photopigments are optimized for detecting targets against a foliage background. The Journal of Experimental Biology. 2000. V.203. P. 1963–1986.
  • Viénot F., Brettel H., Ott L., Ben M’ Barek A., Mollon J.D. What do colour-blind people see? Nature. 1995. V. 376. P. 127–128.
  • Wright W.D. The Characteristics of Tritanopia. JOSA. 1952. V. 42 (8). P. 509–521.