The nature of changes in impulse activity of neurons of hypothalamic supraoptic nucleus following prolonged exposure to vibration

© 2018 S. M. Minasyan, G. Yu. Grigoryan, S. H. Sarkisyan, E. S. Gevorkyan, T. I. Adamyan

Yerevan State University, Faculty of Biology, A. Manukyan street, 0025 Yerevan, Armenia
Albert-Ludwigs University, Freiburg, Germany

Received 12 Feb 2018

In the norm and in the dynamics of a single (two-hour) and prolonged (daily for 2 hours within 5, 10, 15 and 30 days) vibration effects changes in the impulse background activity of the supraoptic nucleus of the hypothalamus were studied. Experiments were conducted in albino male rats anesthetized with Nembutal (40 mg/kg, intraperitoneally) under the conditions of acute experiment by extracellular recording. Recording and analysis of impulse activity of neurons in the hypothalamic SON were carried out by a specially developed computer program for biological signals. The rats were exposed to a common vertical vibration of 60Hz frequency, 0.4 mm amplitude, for two hours daily, in a no sound dampening chamber, on a vibration table of EV-1 brand. It is shown that changes in the background activity of SON cells in the dynamics of prolonged exposure to common vertical vibrations have phase characteristics.

Key words: background impulse activity, vibration action, supraoptic nucleus of the hypothalamus

DOI: 10.1134/S0235009218040066

Cite: Minasyan S. M., Grigoryan G. Yu., Sarkisyan S. H., Gevorkyan E. S., Adamyan T. I.. Kharakter izmeneniya impulsnoi aktivnosti neironov supraopticheskogo yadra gipotalamusa pri dlitelnom vozdeistvii vibratsii [The nature of changes in impulse activity of neurons of hypothalamic supraoptic nucleus following prolonged exposure to vibration]. Sensornye sistemy [Sensory systems]. 2018. V. 32(4). P. 285-293 (in Russian). doi: 10.1134/S0235009218040066

References:

  • Bazyan A.S. Vzaimodeistvie mediatornuch I modulytornuch system golovnogo mozga I ich vozmoznay roly v formirovanii psichofiziologicheskich I psichopatologicheskich sostoynyi [Interaction of mediator and modulator systems of the brain and their possible role in the formation of psychophysiological and psychopathological conditions]. Yspechi fiziologicheskich nayk [Successes fiziol. Sciences]. 2001. V. 32. № 3. P. 3–22 [in Russian].
  • Baklavadjyan O.G. Viscerosomaticheckie afferentnue sistemy gipotalamysa [Viscera Somatic afferent system of the hypothalamus]. L.: Science, 1985. 236 p. [in Russian].
  • Bodnenkova G.M., Lizarev A.V. The pathogenic role of immune reactivity in the mechanisms that determine the relationship of the hypothalamic-pituitary-adrenal and thyroid systems in vibration disease. Med. tr. I prom.ekologiy [Occup. med. and ind. Ecology]. 2005. V. 12. P. 25–27 [in Russian].
  • Rankova V.A., Kuleshova M.V., Katamonova G.M., Kartapoliceva N.V. Effect of vibration on the functional activity of the nervous system in animal experiments. Bull. East Sib. Sci. Center of SB RAMS. 2013. № 3. P. 113–117 [in Russian].
  • Shalyapina V.G., Ordyan N.E. Rezeptory kortykosteroidov v mozgy kak signalynue sistemy stressa I adaptacii [Corticosteroid receptors in the brain as signal systems of stress and adaptation]. Uspechi fiziol.nauk [Successes fiziol. Sciences]. 2000. V. 31. № 4. P. 86–101 [in Russian].
  • Affleck V.S., Coote J.H., Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience. 2012. V. 6. № 219. P. 48–61.
  • Azzena G.B., Melis F., Caria M.A. Vestibular projections to hypothalamic supraoptic and paraventricular niclei. Arch. Ital. Biol. 1993. V. 131. № 2–3. P. 127–136.
  • Boudaba C., Popescu I.R., Weng F., Harris C., Marcheselli V.L., Bazan N.G., Tasker J.G. Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus. J. Physiol. 2005. V. 569. № 3. P. 751–760.
  • Engelmann M., Bull P.M., Brown C.H., Landgraf R., Horn T., Singewald N., Ludwig M., Wotjak C.T. GABA selectively controls the secretory actovoty of oxytocin neurons in the rat supraoptic nucleus. European Journals of Neuroscience. 2004. 19. P. 601–608.
  • Kononenko N.I., Dudek F.E. Mechanism of irregular firing of suprachiasmatic nucleus neurons in rat hypothalamic slices. J. Neurophysiol. 2004. V. 91. № 1. P. 267–273.
  • Koyama S., Kanemitsu Y., Weight F. Spontaneous activity and properties of two types of principial neurons from the ventral tegmental area of rat. J. Neurophysiol. 2005. V. 93. № 6. P. 3282–3293.
  • Lowrie M. Vestibular disease: anatomy, physiology, and clinical signs. Compend. Contin. Educ. Vet. 2012. V. 34. № 7. P. 1–5.
  • Lowry C.A. Functional subsets of serotonergic neurons: implication for control of the hypothalamic-pituitaryadrenal axis. J. Neuroendocrinol. 2012. V. 14. № 11. P. 911–923.
  • Paxinos G., Watson Ch. The Rat Brain in Stereotaxic Coordinates. Academic press. New York. 2005. P. 376.
  • Shibuya I., Kabashima N., Ibrahim N., Setiadji S., Ueta Y., Yamashita H. Pre- and postsynaptic modulation of the electrical activity of rat supraoptic neurons. Exp. Physiol. 2000. V. 85 (1). P. 145–151.
  • Yang J., Yang Y., Chen J.-M., Liu W.-Y., Wang C.-H., Lin B.-C. Effect of oxytocin on acupuncture analgesia in the rat. Neuropeptides. 2007a. V. 41. P. 285–292.
  • Yang J., Yang Y., Chen J.-M., Liu W.-Y., Wang C.-H., Lin B.-C. Central oxytocin enhances antinociception in the rat. Peptides. 2007b. V. 28. P. 1113–1119.