Mechanism of oxidative action of light on lipofuscin granules from the retinal pigment epithelium cells of the human eye: the role of superoxide radicals

© 2017 M.A. Yakovleva1, A.E. Dontsov1, N.L. Sakina1, P.M. Arbukhanova2, T.B. Feldman1,3, S.A. Borzenok2, M.A. Ostrovsky1,3

1Emanuel Institute of Biochemical Physics RUS, 119334 Moscow, Kosygin st., 4
2Sv. Fyodorov Eye Microsurgery Complex, 127486 Moscow, Beskudnikovsky bld., 59a
3Lomonosov Moscow State University, 119991 Moscow, Leninskie Gory, 1

Received 01 Mar 2017

Comparative effect of visible light and superoxide radicals on the lipofuscin granules (LG) uorescent characteristics of the human eye retinal pigment epithelium (RPE) and their main fluorophore A2E was studied using methods of fluorescence spectroscopy and high performance liquid chromatography. It has been shown that both the irradiation with visible light and the action of superoxide radicals produced the increase of fluorescence intensity LG in the short- wavelength region of the spectrum (400–500 nm). At the same time light caused a decrease in fluorescence intensity LG in the long-wavelength region of the spectrum (500–600 nm) unlike superoxide radicals. Similar effects of visible light and superoxide radicals were also demonstrated with regards of A2E cardiolipin-containing liposomes and the chloroform extracts LG. These results suggest that visible light causes the more wide range of changes in the fluorescent properties of fluorophores LG from RPE cells than superoxide radicals in dark conditions. We conclude that the oxidative effect of light on LG is mediated not only superoxide radicals but also other reactive oxygen species generated during the photo-oxidative degradation of fluorophores of LG.

Key words: retinal pigment epithelium, lipofuscin granules, fluorophores, A2E, superoxide, derivatives of all-trans-retinal, fluorescence.

Cite: Yakovleva M. A., Dontsov A. E., Sakina N. L., Arbukhanova P. M., Feldman T. B., Borzenok S. A., Ostrovsky M. A.. Mekhanizmy okislitelnogo deistviya sveta na lipofustsinovye granuly iz kletok retinalnogo pigmentnogo epiteliya glaza cheloveka: rol superoksidnykh radikalov [Mechanism of oxidative action of light on lipofuscin granules from the retinal pigment epithelium cells of the human eye: the role of superoxide radicals]. Sensornye sistemy [Sensory systems]. 2017. V. 31(3). P. 227-236 (in Russian).


  • Dontsov A.E., Sakina N.L., Bilinska B., Krzyzanowski L., Feldman T.B., Ostrovsky M.A. Comparison of the photosensitizing effect of lipofuscin granules from the pigment epithelium of the human eye and their uorophore A2E // Doklady RAN. 2005. V. 405. P. 458–460 [in Russian]
  • Dontsov A.E., Sakina N.L., Golubkov A.M., Ostrovsky M.A. Light-induced release of A2E photooxidation toxic products from lipofuscin granules of human retinal pigment epithelium // Doklady RAN. 2009. V. 425. P. 98–101 [in Russian]
  • Ostrovsky M.A., Dontsov A.E., Sakina N.L., Boulton M., Jarvis-Evans J. The ability of lipofuscin granules of the retinal pigment epithelium of the human eye a photosensitized peroxidation lipids by the action of visible light // Sensore Systems. 1992. V. 6. No 3. P. 51–54 [in Russian]
  • Ostrovsky M.A., Fedorovich I.B. Photosensitized oxidation as a mechanism of the damaging effect of light on the retina // Chem. Phis. 1996. V. 15. P. 73–80 [in Russian]
  • Yakovleva M.A., Sakina N.L., Kononikhin A.S., Feldman T.B., Nikolaev E.N., Dontsov A.E., Ostrovsky M.A. Detection and study of the products of photooxidation of N-retinylidene-N-retinylethanolamine, the uorophore of lipofuscin granules from retinal pigment epithelium of human donor eyes // Doklady RAN. 2006. V. 409. No 3. P. 411–414 [in Russian]
  • Ben-Shabat S., Itagaki Y., Jockusch S., Sparrow J.R., Turro N.J., Nakanishi K. Formation of a nona-oxirane from A2E, a lipofuscin uorophore related to macular degeneration, and evidence of singlet oxygen involvement // Angewandte Chemie. 2002. V. 41. P. 814–817.
  • Boulton M., Dontsov A.E., Ostrovsky M.A., Jarvis-Evans J., Svistunenko D. Superoxide radical generation by human RPE lipofuscin: a photoinducible effect // Invest. Ophthalmol. Vis. Sci. 1992. V. 33 (4). P. 919–929.
  • Cruickshanks K.J., Klein R., Klein B.E. Sunlight and age-related macular degeneration: The Beaver Dam Eye Study // Arch. Ophthalmol. 1993. V. 111. P. 514–518.
  • Dillon J., Wang Z., Avalle L.B., Gaillard E.R. The photochemical oxidation of A2E results in the formation of a 5,8,5',8'-bis-furanoid oxide // Experimental Eye Research. 2004. V. 79. P. 537–542.
  • Eldred G.E., Lasky M.R. Retinal age pigments generated by self-assembling lysosomotrophic detergents // Nature. 1993. V. 361. P. 724–726.
  • Feldman T.B., Yakovleva M.A., Arbukhanova P.M., Borzenok S.A., Kononikhin A.S., Popov I.A., Nikolaev E.N., Ostrovsky M.A. Changes in spectral properties and composition of lipofuscin uorophores from human-retinal-pigment epithelium with age and pathology // Anal. Bio-anal. Chem. 2015. V. 407 (4). P. 1075–1088. DOI 10.1007/ s00216-014-8353-z.
  • Fujinami K., Lois N., Davidson A.E., Mackay D.S., Hogg C.R., Stone E.M., Tsunoda K., Tsubota K., Bunce C., Robson A.G., Moore A.T., Webster A.R., Holder G.E., Michaelides M. A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations // Am. J. Ophthalmol. 2013. V. 155. P. 1075–1088.
  • Holz F.G., Pauleikho D., Klein R., Bird A.C. Pathogenesis of lesions in late age-related macular disease // Am.J. Ophthalmol. 2004. V. 137. P. 504–510.
  • Holz F.G., Schutt F., Kopotz J., Eldred G.E., Kruse F.E., Volker H.E., Gantz M. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin // Invest. Ophthalmol. Visual Sci. 1999. V. 40. P. 737–743.
  • Jang Y.P., Hiroko Matsuda H., Yasuhiro Itagaki Y., Koji Nakanishi K., Sparrow J.R. Characterization of peroxy- A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin // J. Biol. Chem. 2005. V. 280(48). P. 39732–39739.
  • Jung T., Bader N., Grune T. Lipofuscin. Formation, distribution, and metabolic consequences // Ann. NY Acad. Sci. 2007. V. 1119. P. 97–111.
  • Kanofsky J.R., Sima P.D., Richter C. Singletoxygen Generationfrom A2E // Photochem. Photobiol. 2003. V. 77. P. 235–242.
  • Kennedy C.J., Rakoczy P.E., Constable I.J. Lipofuscin of the retinal pigment epithelium: a review // Eye. 1995. V. 9. P. 763–771.
  • Klein R., Klein B.E., Jensen S.C., Cruickshanks K.J. The relationship of ocular factors to the incidence and progression of age-related maculopathy // Arch. Ophthalmol. 1998. V. 116. P. 506–513.
  • Lamb L.E., Simon J.D. A2E: a component of ocular lipofuscin // Photochem. Photobiol. 2004. V. 79 (2). P. 127–136.
  • Parish C.A., Hashimoto M., Nakanishi K., Dillon J., Sparrow J. Isolation and one-step preparation of A2E and iso-A2E, uorophores from human retinal pigment epithelium // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 14609–14613.
  • Pawlak A., Wrona M., Rózanowska M., Zareba M., Lamb L.E., Roberts J.E., Simon J.D., Sarna T. Comparison of the aerobic photoreactivity of A2E with its precursor retinal // Photochem. Photobiol. 2003. V. 77 (3). P. 253–258.
  • Rozanowska M., Sarna T., Land E.J., Truscott T.G. Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals // Free Radic. Biol. Med. 1999. V. 26 (5–6). P. 518–525.
  • Shaw P.X., Stiles T., Douglas C., Fan D.Ho. W., Xiao H. Du. Xu. Oxidative stress, innate immunity, and age-related macular degeneration // AIMS Mol. Sci. 2016. V. 3 (2). P. 196–221. DOI 10.3934/molsci.2016.2.196.
  • Sparrow J.R., Boulton M.E. RPE lipofuscin and its role in retinal pathobiology // Exp. Eye Res. 2005. V. 80. P. 595–606.
  • Sparrow J.R., Paris C.A., Hashimoto M., Nakanishi K. A2E, a lipofuscin uorophore, in human retinal pigmented epithelial cells in culture // Invest. Ophthalmol. Visual Sci. 1999. V. 40. P. 2988–2995.
  • Taylor H.R., West S., Muñoz B., Rosenthal F.S., Bressler S.B., Bressler N.M. The long-term effects of visible light on the eye // Arch. Ophthalmol. 1992. V. 110. P. 99–104.
  • Tomany S.C., Cruickshanks K.J., Klein R., Klein B.E., Knudtson M.D. Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study // Arch. Ophthalmol. 2004. V. 122 (5). P. 750–757.
  • von Rückmann A., Fitzke F.W., Bird A.C. In vivo fundus autofluorescence in macular dystrophies // Arch. Ophthalmol. 1997. V. 115 (5). P. 609–615.
  • Wang J.J., Klein R., Smith W. Klein B.E., Tomany S., Mitchell P. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: Pooled ndings from the Beaver Dam and Blue Mountains Eye Studies // Ophthalmol. 2003. V. 110. (10) P. 1960–1967.