RESOLUTION OF SOUND RIPPLED SPECTRUM AN DIFFERENT BANDWIDTHS BY HUMANS: ELECTROPHYSIOLOGICAL STUDY

© 2017 D. I. Nechaev, E. V. Sysueva

Institute of Ecology and Evolution, RAS 119071, Moscow, Leninsky prosp., 33

Received 29 Sep 2016

The frequency resolving power of human hearing was investigated by using the phase reversal test in conjunction with recording slow auditory evoked potentials (SAEP). The rippled noise was used as a test signal. The central frequency of the signal was 2 kHz, and its spectrum bandwidth was from 5 to 1 oct. The principle of the test was to find the highest ripple density at which the SAEP to interchange of spectral peak and trough positions was recorded. The ripple-density resolution was 8.5 rip/oct at spectrum bandwidth from 5 to 2 oct. This result is in agreement with psychophysical data. The ripple density resolution was 6.9 rip/oct at bandwidth 1 oct, which is below psychophysical data.

Key words: hearing, frequency resolution power, rippled spectrum, evoked potential

Cite: Nechaev D. I., Sysueva E. V.. Razlichenie grebenchatoi struktury spektra zvukovogo signala chelovekom pri razlichnoi shirine spektra: elektrofiziologicheskoe issledovanie [Resolution of sound rippled spectrum an different bandwidths by humans: electrophysiological study]. Sensornye sistemy [Sensory systems]. 2017. V. 31(2). P. 144-149 (in Russian).

References:

  • Nechaev D. I., Milekhina O.N., Supin A. Ya. The influence of noise of di erent configurations on the hearing sensitivity to the dynamic changes in sound spectrum // Sensory systems. 2014. V. 28. No 3. P. 68–75 [in Russian].
  • Nechaev D. I., Milekhina O. N., Supin A. Ya. Hearing sensitivity to spectrum-pattern at various forms of sound spectrum // Sensory systems. 2013. V.27. No 2. P. 160–170 [in Russian].
  • Nechaev D. I., Sysueva E. V. Frequency selectivity of hearing // Sensory systems. 2015. V. 29. No 3. P. 181–200 [in Russian].
  • Novikova L. A., Rybalko N. A., Supin A. Ya. Measuring the auditory frequency resolving power in normal and ones with hearing loss // Journal of otorhinolaryngology. 1986. No 6. P. 26–31 [in Russian].
  • Popov V. V., Supin A. Ya. Quantitative measurement of auditory resolving power in man//Doklady RAN. 1984. V. 278. P. 1012–1016 [in Russian].
  • Supin A. Ya. Discrimination of spectral patterns of sound signals in conditions of interfering noise // Russian Physiological Journal. 2007. V. 93. No 6. P. 579–591 [in Russian].
  • Supin A. Ya., Popov V. V., Milekhina O. N., Tarakanov M. B. Frequency resolving power of humans at di erent masker-to-probe ratios // Sensory systems. 2006. V. 20. No 2. P 141–148 [in Russian].
  • Supin A. Ya., Popov V. V., Milekhina O. N., Tarakanov M. B. The hearing sensitivity to contrast of sound spectral patterns // Doklady RAN. 1999. Т. 365. P. 571–573 [in Russian].
  • Drennan W. R., Won J. H., Nie K., Jameyson E., Rubinstein J. T. Sensitivity of psychophysical measures to signal processor modification in cochlear implant users // Hearing Research. 2010. V. 262. P. 1–8.
  • Faulkaner K. F., Tremblay K. L., Rubinsteim J. T., Werner L.A., Nie K. Auditory training in adult cochlear implant listeners using spectrally-rippled noise stimuli in an adaptive, single-interval paradigm // Presented at 33rd annual meeting of the association research in otolaryngology. Abstract #363. 2010.
  • Henry B. A., Turner C. W. Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners // J. Acoust. Soc. Am. 2005. V. 118. P. 1111–1121.
  • Litvak L. M., Spahr A. J., Saoji A. A., Fridman G. Y. Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners // J. Acoust. Soc. Am. 2007. V. 122. P. 982–991.
  • Moore B.C.J. Frequency selectivity, Masking, and the Critical Band// An introduction to psychology of hearing/ Ed. Moore B.C.J. Boston. Leiden, 2013. P. 67–131.
  • Nechaev D. I., Supin A. Ya. Hearing sensitivity to shifts of rippled-spectrum patterns // J. Acoust.Soc.Am. 2013. V. 134. P. 2913–2922.
  • Supin A. Ya., Popov V. V., Milekhina O. N., Tarakanov M. B. Rippled-spectrum resolution dependence on masker-toprobe ratio // Hearing Research. 2005. V. 204. P. 191–199.
  • Supin A. Ya., Popov V. V., Milekhina O. N., Tarakanov M. B.
  • Frequency resolving power measured by rippled noise // Hearing Research. 1994. V. 78. P. 31–40.
  • Supin A. Ya., Popov V. V., Milekhina O. N., Tarakanov M. B.
  • Ripple density resolution for various rippled-noise patterns // J. Acoust. Soc. Am. 1998. V. 103. P. 2042–2050.
  • Valdes A.L., Mc Laughlin M., Viani L., Walshe P., Smith J., Zeng F. G., Reilly R. B. Objective assessment of spectral ripple discrimination in cochlear implants listeners using cortical evoked responses to an oddball paradigm // PLOS one. 2014. V. 9. I. 3. e90044.
  • Viemeister N. F. Temporal modulation transfer functions based upon modulation thresholds// J. Acoust. Soc. Am. 1979. V. 66. P. 1364–1380.
  • Won J. H., Clinard C. G., Kwon S., Dasika V. K., Nie K., Drennan W. R., Tremblay K. L., Rubinstein J. T. Relationship between behavioral and physiological spectral-ripple discrimination // JARO. 2011. V. 12. P. 375–393.
  • Won J. H., Drennan W. R., Kang R. S., Rubinstein J. T. Psychoacoustic abilities associated with music perception in cochlear implant users // Ear Hear. 2010. V. 31. P. 796–805.
  • Won J. H., Drennan W.R., Rubinatein J. T. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users // J. Assoc. Res. Otolaryngol. 2007. V. 8. P. 384–392.