Mysteries of the blind zone and cone-enriched rim at the extreme periphery of the human retina

© 2016 G. I. Rozhkova, A. V. Belokopytov, M. A. Gracheva

Institute for Information Transmission Problems (Kharkevich Institute), RAS 127051 Moscow, B. Karetny per., 19

Received 25 May 2016

It is well known that human retina is very inhomogeneous: the compositions and proportions of photoreceptors and other retinal cells are strongly dependent on the distance from the foveal centre and differ in different meridians of the eye. Most papers available are devoted to studying structural and functional characteristics of the central area and near periphery of the retina. At the same time, there are some challenging and seemingly contradictory data concerning the extreme periphery. On one side, long ago, well expressed cone-enriched rim had been found at the retinal border along ora serrata. On the other side, there is evidence that the retinal part situated in the vicinity of ora serrata behaves as a blind zone, i.e. people don’t perceive the light stimuli projected there. The papers concerning the extreme periphery of the retina are few in number and heterogeneous. This review presents: some morphological data essential for characterization of the extreme periphery of the human retina; analysis of the differences between the peripheral and the paraxial eye optics; consideration of the hypotheses concerning possible functions of the cone-enriched rim and the blind zone – detection of danger, optic ow analysis during locomotion, contribution to constancy of color perception and other suggestions.

Key words: ora serrata, peripheral retina, blind retina, photoreceptors density, cone-enriched rim, danger detection, locomotion control, color constancy, amblyopia

Cite: Rozhkova G. I., Belokopytov A. V., Gracheva M. A.. Zagadki slepoi zony i koltsa povyshennoi plotnosti kolbochek na krainei periferii setchatki [Mysteries of the blind zone and cone-enriched rim at the extreme periphery of the human retina]. Sensornye sistemy [Sensory systems]. 2016. V. 30(4). P. 263-281 (in Russian).

References:

  • Bashkatov A. I., Genina E. A., Kochubej V. I., Tuchin V. V. Optical properties of a human eye in a spectral range 370– 2500 nm // Optics and spectroscopy. 2010. V. 109 (2). P. 226–234 [in Russian].
  • Vavilov S. I. The eye and the sun. USSR Acad. Sci. 1950. 123 p. [in Russian].
  • Iomdina E.N, Bauer S. M., Kotlyar K. E. Eye biomechanichs: Theoretical research and clinical applications // Moscow. “Real time”. 2015. 208 p. [in Russian].
  • Kravkov S. V. The eye and its work. Moscow-Leningrad. USSR Acad. Sci. 1950. 531 p. [in Russian].
  • Kuznetsov Ju. V. Prescription of inter-lens distance in eye-glasses. Saint Petersburg. “OOO RA “Veko” 2009. 104 p. [in Russian].
  • Rozhkova G. I., Yarbus A. L. The effects of velocity of retinal image movement on peripheral vision // Biophysics. 1974. V. 19 (5). P. 908–912 [in Russian].
  • Yarbus A. L. Human visual system. I. Adequate visual stimulus // Biophysics. 1975. V. 20 (5). P. 916–919 [in Russian].
  • Yarbus A. L. Human visual system. II. The perceived colour // Biophysics. 1975. V. 20 (6). P. 1099–1104 [in Russian].
  • Yarbus A. L. Human visual system. III. The space of colour sensations // Biophysics. 1976. V. 21 (1). P. 150– 152 [in Russian].
  • Yarbus A. L. Human visual system. IV. Opposite color difference and anticolor. The rst series of experiments // Biophysics. 1976. V. 21 (4). P. 735– 738 [in Russian].
  • Yarbus A. L. Human visual system. V. Opposite color difference and anticolor. The second series of experiments // Biophysics. 1976. V. 21 (5). P. 913–916 [in Russian].
  • Yarbus A. L. Human visual system. VI. Opposite color difference and anticolor. The third series of experiments // Biophysics. 1977. V. 22 (1). P. 123–126 [in Russian].
  • Yarbus A. L. Human visual system. VII. Opposite color difference and anticolor. The fourth series of experiments // Biophysics. 1977. V. 22 (2). P. 328–333 [in Russian].
  • Yarbus A. L. Human visual system. VIII. Description of colour transformations by means of vector algebra // Biophysics. 1977. V. 22 (6). P. 1087– 1094 [in Russian].
  • Yarbus A. L. Human visual system. Simultaneous and successive contrast // Biophysics. 1979. V. 24 (3). P. 524–527 [in Russian].
  • Yarbus A. L. Human visual system. Combined role of the retinal image drift and fast changing retinal sensitivity in perception of colour // Biophysics. 1980. V. 25 (3). P. 548–554 [in Russian].
  • Agarwal A. Axial angles of the eye // Textbook of ophthalmology. Vol. 1 / Eds A. Agarwal, D. Apple, J. Alió, L. Buratto, S. Agarwal. New Delhi: Jaypee Brothers Medical Publ., 2002. P. 422–423.
  • Ahnelt P. K. The photoreceptor mosaic // Eye. 1998. V. 12. P. 531–540.
  • Atchison D. A., Smith G. Optics of the human eye. Oxford: Butterworth-Heinemann. 2000. 269 p.
  • Bennett A. G., Rabbets R. B. Clinical visual optics. London: Butterworth-Heinemann. 2007. 488 p.
  • Berson D. M., Dunn F. A., Takao M. Phototransduction by retinal ganglion cells that set the circadian clock // Science. 2002. V. 295 (5557). P. 1070–1073.
  • Bessou M., Séverac Cauquil A., Dupui P., Montoya R., Bessou P. Speci city of the monocular crescents of the visual eld in postural control // Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie. 1999. V. 322 (9). P. 749–757.
  • Brændstrup P. The functional and anatomical differences between the nasal and temporal parts of the retina // Acta Ophthalmol. 1948. V. 26 (3). P. 351–361.
  • Brücke E. Anatomische Beschreibung des menschlichen Augapfels. Berlin. 1847. s. 23.
  • Colenbrander M. C. Die Lokalisation der Netzhautrisse // Albrecht von Graefes Archiv für Ophthalmol. 1931. V. 126(3). P. 424–435.
  • Collin S. P. A web-based archive for topographic maps of retinal cell distribution in vertebrates // Clin. Exp. Optom. 2008. V. 91. P. 85–95.
  • da Costa B. L. S. A., Hokoç J. N. Photoreceptor topography of the retina in the New World monkey Cebus apella // Vision Research. 2000. V. 40(18). P. 2395–2409.
  • Curcio C. A., Packer O., Kalina R. E. A wholemount method for sequential analysis of photoreceptors and ganglion cells in a single retina // Vision Research. 1987a. V. 27. P. 9–15.
  • Curcio C. A., Sloan K. R., Packer O., Hendrickson A. Distribution of cones in human and monkey retina: individual variability and radial asymmetry // Science. 1987b. V. 236. P. 579–582.
  • Curcio C. A., Sloan K. R., Kalina R. E., Hendrickson A. E. Human photoreceptor topography // J. Comp. Neurology. 1990. V. 292. P. 497–523.
  • Dacey D. M. Parallel pathways for spectral coding in primate retina // Annual Rev. Neurosci. 2000. V. 23. P. 743–775.
  • Donders F. C. Die Grenzen des Gesichtsfeldes in Beziehung zudenen der Netzhaut // Albrecht von Graefes Archiv für Ophthalmol. 1877. V. 23. P. 255–280.
  • Drasdo N., Fowler C. W. Non-linear projection of the retinal image in a wide-angle schematic eye // British J. Ophthalmol. 1974. V. 58. P. 709–714.
  • Fernald R. D. Retinal rod neurogenesis // In Development of the Vertebrate Retina / Eds Finlay B. L., Sengelaub D. R. New York: Plenum Press, 1988. P. 31–42.
  • Fry G. A., Alpern M. The effect on foveal vision produced by a spot of light on the sclera near the margin of the retina // JOSA. 1953. V. 43 (3). P. 187–188.
  • Gibson J. J. Motion picture testing and research // Army Air Force Aviation Psychology Reports. 1947. N7. 267 p.
  • Goncharov A. V., Dainty C. Wideeld schematic eye models with gradient-index lens // JOSA A. 2007. V. 24(8). P. 2157–2174.
  • Greef R. Mikroscopische Anatomie der Sehnerven und der Netzhaut // Eds A. von Graefe, T. Saemisch / Handbuch der gesam-ten Augenheilkunde. Leipzig: Verlag von Wilhelm Engelmann. 1900. B. 1. S. 1–212.
  • Grindley G. C. Notes on the perception of movement in relation to the problem of landing an aeroplane // Report FPRC426. Air Ministry Flying Personnel Research Committee. 1942. 19 p.
  • Haines R. F. Dimensions of the apparent pupil when viewed at oblique angles // Am J. Ophthalmol. 1969. V. 68(4). P. 649–656.
  • Hartinger H. Zur Netzhautlokalisation vom optischen Standpunkt // Z. Augenheilkunde. 1931. B. 74. S. 87–92.
  • Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity // Science. 2002. V. 295(5557). P. 1065–1070.
  • HellpachW. DieFarbenwahrnehmungimindirectenSehen// Philosophische Studien. 1900. B. 15. S. 524–578.
  • Jay B. S. The effective papillary area at varying perimetric angles // Vision Res. 1962. V. 1. P. 418–424.
  • Katz M., Kruger P. B. The Human Eye as an Optical System / Duane’s Ophthalmology on CDROM. 2006. Chapter 33.
  • KellingSt.,Sengelaub D. R.,Wikler K. C.,Finlay B. L.Differential elasticity of the immature retina: A contribution to the development of the area centralis? // Visual Neuroscience. 1989. V. 2. P. 117–125.
  • Kooijman A. Light distribution on the retina of a wideangle theoretical eye // J. Opt. Sot. Am. 1983. V. 73. P. 1544–1550.
  • Le Grand Y. Les yeux et la vision. Paris: Dunod, 1960. 196 p.
  • Lia B., Williams R. W., Chalupa L. M. Formation of retinal ganglion cell topography during prenatal development // Science. 1987. V. 236. P. 848–851.
  • Lotmar W. Theoretical eye model with aspherics // JOSA. 1971. V. 61(11). P. 1522–1529.
  • Maggiore L. L’ora serrata nell’occhio umano // Ann. ottal. 1924. V. 52. P. 625–723.
  • Masland R. H. The fundamental plan of the retina // Nat. Neurosci. 2001. V. 4 (9). С. 877–886.
  • Masland R. H. The Neuronal Organization of the Retina // Neuron. 2012. V. 76 (2). P. 266–280.
  • Mathur A., Gehrmann J., Atchison D. A. Pupil shape as viewed along the horizontal visual eld // J. Vision. 2013. V. 13 (6). P. 1–8.
  • Mollon J. D., Regan B. C., Bowmaker J. K. What is the function of the cone-rich rim of the retina // Eye. 1998. V. 12 (Pt 3b). P. 548–552.
  • Navarro R. The Optical Design of the Human Eye: a Critical Review // J. Optom. 2009. V. 2(1). P. 3–18.
  • Østerberg G. A. Topography of the layer of rods and cones in the human retina // Acta ophthal. 1935. Suppl. V. 13 (6). P. 1–102.
  • Pavard B., Berthoz A., Lestienne F. Rôle de la vision périphérique dans l’évaluation du mouvement linéaire, interaction visuo-vestibulaire et effets posturaux // Le Travail Humain. 1976. V. 39. P. 115–138.
  • Pikler J.Das Augenhüllenlicht als Mass der Farben // Zeits.f. Psychol. 1931. B. 120 (189).
  • Polyak S. L. The retina. Chicago: Univ. Chicago Press. 1941. 607 p.
  • Pomerantzeff O., Fish H., Govignon J., Schepens C. Wide angle optical model of the human eye // Ann. Ophthalmol. 1971. V. 3. P. 815–819.
  • Pomerantzeff O., Fish H., Govignon J., Schepens C. Wideangle optical model of the eye // Optica Acta. 1972. V. 19 (5). P. 387–388.
  • Ramon y Cajal S.Morfologia y conexiones de los elementos de la retina de las aves // Rev. Trimest. De Histol. Norm. y Patol. 1888. N. 1. P. 11–16.
  • Rönne H. Zur theorie und technik der bjerrumschen gesichtsfelduntersuchung//ArchivfürAugenheilkunde.1915. V. 78. P. 284–301.
  • Salzmann M. The anatomy and histology of the human eyeball in the normal state, it’s development and senescence. Chicago: University of Chicago, 1912. 196 p.
  • Schultze M.Zur anatomie und physiologie der retina // Archiv für mikroskopische Anatomie. 1866. V. 2(1). P. 175–286.
  • Spring K. H., Stiles W. S. Apparent shape and size of the pupil viewed obliquely // The British J. Ophthalmol. 1948. V. 32(6). P. 347.
  • Schouten J. F., Ornstein L. S. Measurements on Direct and Indirect Adaptation by Means of a Binocular Method // JOSA. 1939. V. 29. P. 168–182.
  • To M. P. S., Regan B. C., Wood D., Mollon J. D. Vision out of the corner of the eye // Vision Research. 2011. V. 51 (1). P. 203–214.
  • To M., Mollon J. D. Anisotropy of motion sensitivity at the temporal margin of the visual eld // Perception. 2005. V. 34. P. 230.
  • Tscherning M. Physiologic optics. Dioptics of the eye, functions of the retina, ocular movements and binocular vision. Philadelphia: Keystone Publ. Co., 1924. P. 150–154.
  • Tyler C. W. Analysis of visual modulation sensitivity. II. Peripheral retina and the role of photoreceptor dimensions // JOSA. 1985. V. 2. P. 393–398.
  • Weve H. J.M. Leerboek der oogheelkundige Onderzoekingsmetodes. Leiden: Stenfert&Kroesse, 1942. 372 s.
  • Williams R. W. The human retina has a cone-enriched rim // Vis. Neurosci. 1991. V. 6 (4). P. 403–406.
  • Wong K. Y., Dunn F. A., Berson D. M. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells // Neuron. 2005 V. 48 (6). P. 1001–1010.